年终活动
搜索
    上传资料 赚现金

    2021-2022学年湖南省武冈市洞庭校中考数学对点突破模拟试卷含解析

    2021-2022学年湖南省武冈市洞庭校中考数学对点突破模拟试卷含解析第1页
    2021-2022学年湖南省武冈市洞庭校中考数学对点突破模拟试卷含解析第2页
    2021-2022学年湖南省武冈市洞庭校中考数学对点突破模拟试卷含解析第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年湖南省武冈市洞庭校中考数学对点突破模拟试卷含解析

    展开

    这是一份2021-2022学年湖南省武冈市洞庭校中考数学对点突破模拟试卷含解析,共28页。试卷主要包含了答题时请按要求用笔,下面运算正确的是,已知点A等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为(  )

    A.36 B.12 C.6 D.3
    2.已知:如图是y=ax2+2x﹣1的图象,那么ax2+2x﹣1=0的根可能是下列哪幅图中抛物线与直线的交点横坐标(  )

    A. B.
    C. D.
    3.如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a所对应的点可能是( )

    A.M B.N C.P D.Q
    4.在中,,,下列结论中,正确的是( )
    A. B.
    C. D.
    5.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是( )

    A. B.
    C. D.
    6.若x=-2是关于x的一元二次方程x2+ax-a2=0的一个根,则a的值为( )
    A.-1或4 B.-1或-4
    C.1或-4 D.1或4
    7.下面运算正确的是(  )
    A. B.(2a)2=2a2 C.x2+x2=x4 D.|a|=|﹣a|
    8.现有三张背面完全相同的卡片,正面分别标有数字﹣1,﹣2,3,把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片正面数字之和为正数的概率是(  )
    A. B. C. D.
    9.已知点A(0,﹣4),B(8,0)和C(a,﹣a),若过点C的圆的圆心是线段AB的中点,则这个圆的半径的最小值是(  )
    A. B. C. D.2
    10.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是(  )

    A.50° B.60° C.70° D.80°
    11.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,下列结论:
    ①△AED≌△DFB;②S四边形 BCDG=CG2;③若AF=2DF,则BG=6GF
    ,其中正确的结论

    A.只有①②. B.只有①③. C.只有②③. D.①②③.
    12.计算(x-l)(x-2)的结果为( )
    A.x2+2 B.x2-3x+2 C.x2-3x-3 D.x2-2x+2
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.我们知道:1+3=4,1+3+5=9,1+3+5+7=16,…,观察下面的一列数:-1,2,,-3, 4,-5,6…,将这些数排列成如图的形式,根据其规律猜想,第20行从左到右第3个数是 .

    14.在平面直角坐标系xOy中,位于第一象限内的点A(1,2)在x轴上的正投影为点A′,则cos∠AOA′=__.
    15.如图,若正五边形和正六边形有一边重合,则∠BAC=_____.

    16.如图,在正方形网格中,线段A′B′可以看作是线段AB经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由线段AB得到线段A′B′的过程______

    17.如图,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.

    18.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO=_____度.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.
    (1)求此抛物线的解析式及顶点D的坐标;
    (2)点M是抛物线上的动点,设点M的横坐标为m.
    ①当∠MBA=∠BDE时,求点M的坐标;
    ②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.

    20.(6分)立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.当10≤x<60时,求y关于x的函数表达式;九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;
    ①若两次购买鞋子共花费9200元,求第一次的购买数量;
    ②如何规划两次购买的方案,使所花费用最少,最少多少元?

    21.(6分)在平面直角坐标系xOy中,一次函数的图象与y轴交于点,与反比例函数 的图象交于点.
    求反比例函数的表达式和一次函数表达式;
    若点C是y轴上一点,且,直接写出点C的坐标.

    22.(8分)如图,抛物线y=x1﹣1x﹣3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为1.
    (1)求A,B两点的坐标及直线AC的函数表达式;
    (1)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求△ACE面积的最大值;
    (3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由.
    (4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由.

    23.(8分)解不等式组,并把它的解集表示在数轴上.

    24.(10分)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.
    设在同一家复印店一次复印文件的页数为x(x为非负整数).
    (1)根据题意,填写下表:
    一次复印页数(页)
    5
    10
    20
    30

    甲复印店收费(元)
    0.5
       
    2
       

    乙复印店收费(元)
    0.6
       
    2.4
       

    (2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x的函数关系式;
    (3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.
    25.(10分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A作BC的平行线交CE的延长线与F,且AF=BD,连接BF。求证:D是BC的中点;如果AB=AC,试判断四边形AFBD的形状,并证明你的结论。

    26.(12分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=8,点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒8个单位长度的速度运动,在BC上以每秒2个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒个单位长度的速度运动,两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.
    (1)求线段AQ的长;(用含t的代数式表示)
    (2)当点P在AB边上运动时,求PQ与△ABC的一边垂直时t的值;
    (3)设△APQ的面积为S,求S与t的函数关系式;
    (4)当△APQ是以PQ为腰的等腰三角形时,直接写出t的值.

    27.(12分)如图,B、E、C、F在同一直线上,AB=DE,BE=CF,∠B=∠DEF,求证:AC=DF.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论. 
    解:设△OAC和△BAD的直角边长分别为a、b, 
    则点B的坐标为(a+b,a﹣b).
    ∵点B在反比例函数的第一象限图象上, 
    ∴(a+b)×(a﹣b)=a2﹣b2=1. 
    ∴S△OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=×1=2. 
    故选D.
    点睛:本题主要考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.解决该题型题目时,要设出等腰直角三角形的直角边并表示出面积,再用其表示出反比例函数上点的坐标是关键.
    2、C
    【解析】
    由原抛物线与x轴的交点位于y轴的两端,可排除A、D选项;
    B、方程ax2+2x﹣1=0有两个不等实根,且负根的绝对值大于正根的绝对值,B不符合题意;
    C、抛物线y=ax2与直线y=﹣2x+1的交点,即交点的横坐标为方程ax2+2x﹣1=0的根,C符合题意.此题得解.
    【详解】
    ∵抛物线y=ax2+2x﹣1与x轴的交点位于y轴的两端,
    ∴A、D选项不符合题意;
    B、∵方程ax2+2x﹣1=0有两个不等实根,且负根的绝对值大于正根的绝对值,
    ∴B选项不符合题意;
    C、图中交点的横坐标为方程ax2+2x﹣1=0的根(抛物线y=ax2与直线y=﹣2x+1的交点),
    ∴C选项符合题意.
    故选:C.
    【点睛】
    本题考查了抛物线与x轴的交点以及二次函数的图象与位置变化,逐一分析四个选项中的图形是解题的关键.
    3、A
    【解析】
    解:∵点P所表示的数为a,点P在数轴的右边,∴-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,∴数-3a所对应的点可能是M,故选A.
    点睛:本题考查了数轴,解决本题的关键是判断-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍.
    4、C
    【解析】
    直接利用锐角三角函数关系分别计算得出答案.
    【详解】
    ∵,,
    ∴,
    ∴,
    故选项A,B错误,
    ∵,
    ∴,
    故选项C正确;选项D错误.
    故选C.

    【点睛】
    此题主要考查了锐角三角函数关系,熟练掌握锐角三角函数关系是解题关键.
    5、D
    【解析】
    此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.
    【详解】
    解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,
    又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.
    故选D.
    点评:本题考核立意相对较新,考核了学生的空间想象能力.
    6、C
    【解析】
    试题解析:∵x=-2是关于x的一元二次方程的一个根,
    ∴(-2)2+a×(-2)-a2=0,即a2+3a-2=0,
    整理,得(a+2)(a-1)=0,
    解得 a1=-2,a2=1.
    即a的值是1或-2.
    故选A.
    点睛:一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
    7、D
    【解析】
    分别利用整数指数幂的性质以及合并同类项以及积的乘方运算、 绝对值的性质分别化简求出答案.
    【详解】
    解:A,,故此选项错误;
    B,,故此选项错误;
    C,,故此选项错误;
    D,,故此选项正确.
    所以D选项是正确的.
    【点睛】
    灵活运用整数指数幂的性质以及合并同类项以及积的乘方运算、 绝对值的性质可以求出答案.
    8、D
    【解析】
    先找出全部两张卡片正面数字之和情况的总数,再先找出全部两张卡片正面数字之和为正数情况的总数,两者的比值即为所求概率.
    【详解】
    任取两张卡片,数字之和一共有﹣3、2、1三种情况,其中和为正数的有2、1两种情况,所以这两张卡片正面数字之和为正数的概率是.故选D.
    【点睛】
    本题主要考查概率的求法,熟练掌握概率的求法是解题的关键.
    9、B
    【解析】
    首先求得AB的中点D的坐标,然后求得经过点D且垂直于直线y=-x的直线的解析式,然后求得与y=-x的交点坐标,再求得交点与D之间的距离即可.
    【详解】
    AB的中点D的坐标是(4,-2),
    ∵C(a,-a)在一次函数y=-x上,
    ∴设过D且与直线y=-x垂直的直线的解析式是y=x+b,
    把(4,-2)代入解析式得:4+b=-2,
    解得:b=-1,
    则函数解析式是y=x-1.
    根据题意得:,
    解得:,
    则交点的坐标是(3,-3).
    则这个圆的半径的最小值是:=.
    故选:B
    【点睛】
    本题考查了待定系数法求函数的解析式,以及两直线垂直的条件,正确理解C(a,-a),一定在直线y=-x上,是关键.
    10、B
    【解析】
    试题分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.
    由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故选B.
    考点:旋转的性质.
    11、D
    【解析】
    解:①∵ABCD为菱形,∴AB=AD.

    ∵AB=BD,∴△ABD为等边三角形.
    ∴∠A=∠BDF=60°.
    又∵AE=DF,AD=BD,
    ∴△AED≌△DFB;
    ②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,
    即∠BGD+∠BCD=180°,
    ∴点B、C、D、G四点共圆,
    ∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.
    ∴∠BGC=∠DGC=60°.
    过点C作CM⊥GB于M,CN⊥GD于N.
    ∴CM=CN,
    则△CBM≌△CDN,(HL)
    ∴S四边形BCDG=S四边形CMGN.
    S四边形CMGN=1S△CMG,
    ∵∠CGM=60°,
    ∴GM=CG,CM=CG,
    ∴S四边形CMGN=1S△CMG=1××CG×CG=CG1.

    ③过点F作FP∥AE于P点.
    ∵AF=1FD,
    ∴FP:AE=DF:DA=1:3,
    ∵AE=DF,AB=AD,
    ∴BE=1AE,
    ∴FP:BE=1:6=FG:BG,
    即 BG=6GF.
    故选D.
    12、B
    【解析】
    根据多项式的乘法法则计算即可.
    【详解】
    (x-l)(x-2)
    = x2-2x-x+2
    = x2-3x+2.
    故选B.
    【点睛】
    本题考查了多项式与多项式的乘法运算,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、2
    【解析】
    先求出19行有多少个数,再加3就等于第20行第三个数是多少.然后根据奇偶性来决定负正.
    【详解】
    ∵1行1个数,
    2行3个数,
    3行5个数,
    4行7个数,

    19行应有2×19-1=37个数
    ∴到第19行一共有
    1+3+5+7+9+…+37=19×19=1.
    第20行第3个数的绝对值是1+3=2.
    又2是偶数,
    故第20行第3个数是2.
    14、.
    【解析】
    依据点A(1,2)在x轴上的正投影为点A′,即可得到A'O=1,AA'=2,AO=,进而得出cos∠AOA′的值.
    【详解】
    如图所示,点A(1,2)在x轴上的正投影为点A′,

    ∴A'O=1,AA'=2,
    ∴AO=,
    ∴cos∠AOA′=,
    故答案为:.
    【点睛】
    本题主要考查了平行投影以及平面直角坐标系,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.
    15、132°
    【解析】
    解:∵正五边形的内角=180°-360°÷5=108°,正六边形的内角=180°-360°÷6=120°,∴∠BAC=360°-108°-120°=132°.故答案为132°.
    16、将线段AB绕点B逆时针旋转90°,在向右平移2个单位长度
    【解析】
    根据图形的旋转和平移性质即可解题.
    【详解】
    解:将线段AB绕点B逆时针旋转90°,在向右平移2个单位长度即可得到A′B′、
    【点睛】
    本题考查了旋转和平移,属于简单题,熟悉旋转和平移的概念是解题关键.
    17、2
    【解析】
    凸六边形ABCDEF,并不是一规则的六边形,但六个角都是110°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.
    【详解】
    解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.

    ∵六边形ABCDEF的六个角都是110°,
    ∴六边形ABCDEF的每一个外角的度数都是60°.
    ∴△AHF、△BGC、△DPE、△GHP都是等边三角形.
    ∴GC=BC=3,DP=DE=1.
    ∴GH=GP=GC+CD+DP=3+3+1=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-1=1.
    ∴六边形的周长为1+3+3+1+4+1=2.
    故答案为2.
    【点睛】
    本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.
    18、1.
    【解析】
    试题分析:∵四边形ABCD是菱形,
    ∴OD=OB,∠COD=90°,
    ∵DH⊥AB,
    ∴OH=BD=OB,
    ∴∠OHB=∠OBH,
    又∵AB∥CD,
    ∴∠OBH=∠ODC,
    在Rt△COD中,∠ODC+∠DCO=90°,
    在Rt△DHB中,∠DHO+∠OHB=90°,
    ∴∠DHO=∠DCO=×50°=1°.
    考点:菱形的性质.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)(1,4)(2)①点M坐标(﹣,)或(﹣,﹣);②m的值为 或
    【解析】
    (1)利用待定系数法即可解决问题;
    (2)①根据tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题.
    【详解】
    解:(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,
    得到,解得,
    ∴抛物线的解析式为y=﹣x2+2x+3,
    ∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,
    ∴顶点D坐标(1,4);
    (2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),

    ∴MG=|﹣m2+2m+3|,BG=3﹣m,
    ∴tan∠MBA=,
    ∵DE⊥x轴,D(1,4),
    ∴∠DEB=90°,DE=4,OE=1,
    ∵B(3,0),
    ∴BE=2,
    ∴tan∠BDE==,
    ∵∠MBA=∠BDE,
    ∴=,
    当点M在x轴上方时, =,
    解得m=﹣或3(舍弃),
    ∴M(﹣,),
    当点M在x轴下方时, =,
    解得m=﹣或m=3(舍弃),
    ∴点M(﹣,﹣),
    综上所述,满足条件的点M坐标(﹣,)或(﹣,﹣);
    ②如图中,∵MN∥x轴,

    ∴点M、N关于抛物线的对称轴对称,
    ∵四边形MPNQ是正方形,
    ∴点P是抛物线的对称轴与x轴的交点,即OP=1,
    易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,
    当﹣m2+2m+3=1﹣m时,解得m=,
    当﹣m2+2m+3=m﹣1时,解得m=,
    ∴满足条件的m的值为或.
    【点睛】
    本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.
    20、(1)y=150﹣x; (2)①第一批购买数量为30双或40双.②第一次买26双,第二次买74双最省钱,最少9144元.
    【解析】
    (1)若购买x双(10<x<1),每件的单价=140﹣(购买数量﹣10),依此可得y关于x的函数关系式;
    (2)①设第一批购买x双,则第二批购买(100﹣x)双,根据购买两批鞋子一共花了9200元列出方程求解即可.分两种情况考虑:当25<x≤40时,则1≤100﹣x<75;当40<x<1时,则40<100﹣x<1.
    ②把两次的花费与第一次购买的双数用函数表示出来.
    【详解】
    解:(1)购买x双(10<x<1)时,y=140﹣(x﹣10)=150﹣x.
    故y关于x的函数关系式是y=150﹣x;
    (2)①设第一批购买x双,则第二批购买(100﹣x)双.
    当25<x≤40时,则1≤100﹣x<75,则x(150﹣x)+80(100﹣x)=9200,
    解得x1=30,x2=40;
    当40<x<1时,则40<100﹣x<1,
    则x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=9200,
    解得x=30或x=70,但40<x<1,所以无解;
    答:第一批购买数量为30双或40双.
    ②设第一次购买x双,则第二次购买(100﹣x)双,设两次花费w元.
    当25<x≤40时w=x(150﹣x)+80(100﹣x)=﹣(x﹣35)2+9225,
    ∴x=26时,w有最小值,最小值为9144元;
    当40<x<1时,
    w=x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=﹣2(x﹣50)2+10000,
    ∴x=41或59时,w有最小值,最小值为9838元,
    综上所述:第一次买26双,第二次买74双最省钱,最少9144元.
    【点睛】
    考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
    21、(1)y=,y=-x+1;(2)C(0,3+1 )或C(0,1-3).
    【解析】
    (1)依据一次函数的图象与轴交于点,与反比例函数的图象交于点,即可得到反比例函数的表达式和一次函数表达式;
    (2)由,可得:,即可得到,再根据,可得或,即可得出点的坐标.
    【详解】
    (1)∵双曲线过,将代入,解得:.
    ∴所求反比例函数表达式为:.
    ∵点,点在直线上,∴,,∴,∴所求一次函数表达式为.
    (2)由,可得:,∴.
    又∵,∴或,∴,或,.
    【点睛】
    本题考查了待定系数法求反比例函数、一次函数的解析式和反比例函数与一次函数的交点问题.此题难度适中,注意掌握数形结合思想的应用.
    22、(1)y=﹣x﹣1;(1)△ACE的面积最大值为;(3)M(1,﹣1),N(,0);(4)满足条件的F点坐标为F1(1,0),F1(﹣3,0),F3(4+,0),F4(4﹣,0).
    【解析】
    (1)令抛物线y=x1-1x-3=0,求出x的值,即可求A,B两点的坐标,根据两点式求出直线AC的函数表达式;
    (1)设P点的横坐标为x(-1≤x≤1),求出P、E的坐标,用x表示出线段PE的长,求出PE的最大值,进而求出△ACE的面积最大值;
    (3)根据D点关于PE的对称点为点C(1,-3),点Q(0,-1)点关于x轴的对称点为M(0,1),则四边形DMNQ的周长最小,求出直线CM的解析式为y=-1x+1,进而求出最小值和点M,N的坐标;
    (4)结合图形,分两类进行讨论,①CF平行x轴,如图1,此时可以求出F点两个坐标;②CF不平行x轴,如题中的图1,此时可以求出F点的两个坐标.
    【详解】
    解:(1)令y=0,解得或x1=3,
    ∴A(﹣1,0),B(3,0);
    将C点的横坐标x=1代入y=x1﹣1x﹣3得
    ∴C(1,-3),
    ∴直线AC的函数解析式是
    (1)设P点的横坐标为x(﹣1≤x≤1),
    则P、E的坐标分别为:P(x,﹣x﹣1),E(x,x1﹣1x﹣3),
    ∵P点在E点的上方,
    ∴当时,PE的最大值
    △ACE的面积最大值
    (3)D点关于PE的对称点为点C(1,﹣3),点Q(0,﹣1)点关于x轴的对称点为K(0,1),
    连接CK交直线PE于M点,交x轴于N点,可求直线CK的解析式为,此时四边形DMNQ的周长最小,
    最小值
    求得M(1,﹣1),
    (4)存在如图1,若AF∥CH,此时的D和H点重合,CD=1,则AF=1,

    于是可得F1(1,0),F1(﹣3,0),
    如图1,根据点A和F的坐标中点和点C和点H的坐标中点相同,

    再根据|HA|=|CF|,
    求出
    综上所述,满足条件的F点坐标为F1(1,0),F1(﹣3,0),,.
    【点睛】
    属于二次函数综合题,考查二次函数与轴的交点坐标,待定系数法求一次函数解析式,二次函数的最值以及平行四边形的性质等,综合性比较强,难度较大.
    23、不等式组的解是x≥3;图见解析
    【解析】
    先求出每个不等式的解集,再求出不等式组的解集即可.
    【详解】
    解:
    ∵解不等式①,得x≥3,
    解不等式②,得x≥-1.5,
    ∴不等式组的解是x≥3,
    在数轴上表示为:

    【点睛】
    本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.
    24、(1)1,3;1.2,3.3;(2)见解析;(3)顾客在乙复印店复印花费少.
    【解析】
    (1)根据收费标准,列代数式求得即可;
    (2)根据收费等于每页收费乘以页数即可求得y1=0.1x(x≥0);当一次复印页数不超过20时,根据收费等于每页收费乘以页数即可求得y2=0.12x,当一次复印页数超过20时,根据题意求得y2=0.09x+0.6;
    (3)设y=y1-y2,得到y与x的函数关系,根据y与x的函数关系式即可作出判断.
    【详解】
    解:(1)当x=10时,甲复印店收费为:0,1×10=1;乙复印店收费为:0.12×10=1.2;
    当x=30时,甲复印店收费为:0,1×30=3;乙复印店收费为:0.12×20+0.09×10=3.3;
    故答案为1,3;1.2,3.3;
    (2)y1=0.1x(x≥0);
    y2=;
    (3)顾客在乙复印店复印花费少;
    当x>70时,y1=0.1x,y2=0.09x+0.6,
    设y=y1﹣y2,
    ∴y1﹣y2=0.1x﹣(0.09x+0.6)=0.01x﹣0.6,
    设y=0.01x﹣0.6,
    由0.01>0,则y随x的增大而增大,
    当x=70时,y=0.1
    ∴x>70时,y>0.1,
    ∴y1>y2,
    ∴当x>70时,顾客在乙复印店复印花费少.
    【点睛】
    本题考查了一次函数的应用,读懂题目信息,列出函数关系式是解题的关键.
    25、(1)详见解析;(2)详见解析
    【解析】
    (1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,再根据全等三角形的性质和等量关系即可求解;
    (2)由(1)知AF平行等于BD,易证四边形AFBD是平行四边形,而AB=AC,AD是中线,利用等腰三角形三线合一定理,可证AD⊥BC,即∠ADB=90°,那么可证四边形AFBD是矩形.
    【详解】
    (1)证明:∵AF∥BC,
    ∴∠AFE=∠DCE,
    ∵点E为AD的中点,
    ∴AE=DE,
    在△AEF和△DEC中,

    ∴△AEF≌△DEC(AAS),
    ∴AF=CD,
    ∵AF=BD,
    ∴CD=BD,
    ∴D是BC的中点;
    (2)若AB=AC,则四边形AFBD是矩形.理由如下:
    ∵△AEF≌△DEC,
    ∴AF=CD,
    ∵AF=BD,
    ∴CD=BD;
    ∵AF∥BD,AF=BD,
    ∴四边形AFBD是平行四边形,
    ∵AB=AC,BD=CD,
    ∴∠ADB=90°,
    ∴平行四边形AFBD是矩形.
    【点睛】
    本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.
    26、(1)4﹣t;(2)当点P在AB边上运动时,PQ与△ABC的一边垂直时t的值是t=0或或;(3)S与t的函数关系式为:S=;(4)t的值为或.
    【解析】
    分析:(1)根据勾股定理求出AC的长,然后由AQ=AC-CQ求解即可;
    (2)当点P在AB边上运动时,PQ与△ABC的一边垂直,有三种情况:当Q在C处,P在A处时,PQ⊥BC;当PQ⊥AB时;当PQ⊥AC时;分别求解即可;
    (3)当P在AB边上时,即0≤t≤1,作PG⊥AC于G,或当P在边BC上时,即1<t≤3,分别根据三角形的面积求函数的解析式即可;
    (4)当△APQ是以PQ为腰的等腰三角形时,有两种情况:①当P在边AB上时,作PG⊥AC于G,则AG=GQ,列方程求解;②当P在边AC上时, AQ=PQ,根据勾股定理求解.
    详解:(1)如图1,

    Rt△ABC中,∠A=30°,AB=8,
    ∴BC=AB=4,
    ∴AC=,
    由题意得:CQ=t,
    ∴AQ=4﹣t;
    (2)当点P在AB边上运动时,PQ与△ABC的一边垂直,有三种情况:
    ①当Q在C处,P在A处时,PQ⊥BC,此时t=0;
    ②当PQ⊥AB时,如图2,

    ∵AQ=4﹣t,AP=8t,∠A=30°,
    ∴cos30°=,
    ∴,
    t=;
    ③当PQ⊥AC时,如图3,

    ∵AQ=4﹣t,AP=8t,∠A=30°,
    ∴cos30°=,

    t=;
    综上所述,当点P在AB边上运动时,PQ与△ABC的一边垂直时t的值是t=0或或;
    (3)分两种情况:
    ①当P在AB边上时,即0≤t≤1,如图4,作PG⊥AC于G,

    ∵∠A=30°,AP=8t,∠AGP=90°,
    ∴PG=4t,
    ∴S△APQ=AQ•PG=(4﹣t)•4t=﹣2t2+8t;
    ②当P在边BC上时,即1<t≤3,如图5,

    由题意得:PB=2(t﹣1),
    ∴PC=4﹣2(t﹣1)=﹣2t+6,
    ∴S△APQ=AQ•PC=(4﹣t)(﹣2t+6)=t2;
    综上所述,S与t的函数关系式为:S=;
    (4)当△APQ是以PQ为腰的等腰三角形时,有两种情况:
    ①当P在边AB上时,如图6,

    AP=PQ,作PG⊥AC于G,则AG=GQ,
    ∵∠A=30°,AP=8t,∠AGP=90°,
    ∴PG=4t,
    ∴AG=4t,
    由AQ=2AG得:4﹣t=8t,t=,
    ②当P在边AC上时,如图7,AQ=PQ,

    Rt△PCQ中,由勾股定理得:CQ2+CP2=PQ2,
    ∴,
    t=或﹣(舍),
    综上所述,t的值为或.
    点睛:此题主要考查了三角形中的动点问题,用到勾股定理,等腰三角形的性质,直角三角形的性质,二次函数等知识,是一道比较困难的综合题,关键是合理添加辅助线,构造合适的方程求解.
    27、见解析
    【解析】
    由BE=CF可得BC=EF,即可判定,再利用全等三角形的性质证明即可.
    【详解】
    ∵BE=CF,
    ∴,
    即BC=EF,
    又∵AB=DE,∠B=∠DEF,
    ∴在与中,

    ∴,
    ∴AC=DF.
    【点睛】
    本题主要考查了三角形全等的判定,熟练掌握三角形全等的判定定理是解决本题的关键.

    相关试卷

    湖南省常德芷兰实验校2022年中考数学对点突破模拟试卷含解析:

    这是一份湖南省常德芷兰实验校2022年中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,-sin60°的倒数为等内容,欢迎下载使用。

    湖南省武冈市洞庭校2022年中考数学五模试卷含解析:

    这是一份湖南省武冈市洞庭校2022年中考数学五模试卷含解析,共19页。试卷主要包含了不等式组的解集是,下列事件是必然事件的是,如图,已知点A等内容,欢迎下载使用。

    湖南省武冈市洞庭校2021-2022学年中考数学最后冲刺模拟试卷含解析:

    这是一份湖南省武冈市洞庭校2021-2022学年中考数学最后冲刺模拟试卷含解析,共26页。试卷主要包含了定义,将抛物线绕着点等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map