2021-2022学年湖南省长沙市周南石燕湖中学中考数学模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:
甲
2
6
7
7
8
乙
2
3
4
8
8
关于以上数据,说法正确的是( )
A.甲、乙的众数相同 B.甲、乙的中位数相同
C.甲的平均数小于乙的平均数 D.甲的方差小于乙的方差
2.七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:
甲组
158
159
160
160
160
161
169
乙组
158
159
160
161
161
163
165
以下叙述错误的是( )
A.甲组同学身高的众数是160
B.乙组同学身高的中位数是161
C.甲组同学身高的平均数是161
D.两组相比,乙组同学身高的方差大
3.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是( )
A. B. C. D.
4.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg的煤所产生的能量.把130000000kg用科学记数法可表示为( )
A.13×kg B.0.13×kg C.1.3×kg D.1.3×kg
5.某公园里鲜花的摆放如图所示,第①个图形中有3盆鲜花,第②个图形中有6盆鲜花,第③个图形中有11盆鲜花,……,按此规律,则第⑦个图形中的鲜花盆数为()
A.37 B.38 C.50 D.51
6.已知一元二次方程ax2+ax﹣4=0有一个根是﹣2,则a值是( )
A.﹣2 B. C.2 D.4
7.下列运算正确的是( )
A.x3+x3=2x6 B.x6÷x2=x3 C.(﹣3x3)2=2x6 D.x2•x﹣3=x﹣1
8.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是( )
A.AF=CF B.∠DCF=∠DFC
C.图中与△AEF相似的三角形共有5个 D.tan∠CAD=
9.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车辆,根据题意,可列出的方程是 ( ).
A. B.
C. D.
10.下列各式中,计算正确的是 ( )
A. B.
C. D.
11.四组数中:①1和1;②﹣1和1;③0和0;④﹣和﹣1,互为倒数的是( )
A.①② B.①③ C.①④ D.①③④
12.如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.将抛物线y=(x+m)2向右平移2个单位后,对称轴是y轴,那么m的值是_____.
14.新田为实现全县“脱贫摘帽”,2018年2月已统筹整合涉农资金235000000元,撬动800000000元金融资本参与全县脱贫攻坚工作,请将235000000用科学记数法表示为___.
15.化简3m﹣2(m﹣n)的结果为_____.
16.因式分解______.
17.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.
18.如图,在长方形ABCD中,AF⊥BD,垂足为E,AF交BC于点F,连接DF.图中有全等三角形_____对,有面积相等但不全等的三角形_____对.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)求抛物线y=x2+x﹣2与x轴的交点坐标.
20.(6分)如图,在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.
(1)求证:四边形ABCD是平行四边形;
(2)若AB=3cm,BC=5cm,AE=AB,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,△BEP为等腰三角形.
21.(6分)(1)如图1,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD,求证:AO=OB;
(2)如图2,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.
22.(8分)如图,在平面直角坐标系中,四边形OABC为矩形,直线y=kx+b交BC于点E(1,m),交AB于点F(4,),反比例函数y=(x>0)的图象经过点E,F.
(1)求反比例函数及一次函数解析式;
(2)点P是线段EF上一点,连接PO、PA,若△POA的面积等于△EBF的面积,求点P的坐标.
23.(8分)体育老师为了解本校九年级女生1分钟“仰卧起坐”体育测试项目的达标情况,从该校九年级136名女生中,随机抽取了20名女生,进行了1分钟仰卧起坐测试,获得数据如下:
收集数据:抽取20名女生的1分钟仰卧起坐测试成绩(个)如下:
38 46 42 52 55 43 59 46 25 38
35 45 51 48 57 49 47 53 58 49
(1)整理、描述数据:请你按如下分组整理、描述样本数据,把下列表格补充完整:
范围
25≤x≤29
30≤x≤34
35≤x≤39
40≤x≤44
45≤x≤49
50≤x≤54
55≤x≤59
人数
(说明:每分钟仰卧起坐个数达到49个及以上时在中考体育测试中可以得到满分)
(2)分析数据:样本数据的平均数、中位数、满分率如下表所示:
平均数
中位数
满分率
46.8
47.5
45%
得出结论:①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为 ;
②该中心所在区县的九年级女生的1分钟“仰卧起坐”总体测试成绩如下:
平均数
中位数
满分率
45.3
49
51.2%
请你结合该校样本测试成绩和该区县总体测试成绩,为该校九年级女生的1分钟“仰卧起坐”达标情况做一下评估,并提出相应建议.
24.(10分)某种型号油电混合动力汽车,从A地到B地燃油行驶需纯燃油费用76元,从A地到B地用电行驶需纯用电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.求每行驶1千米纯用电的费用;若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?
25.(10分)先化简:,再从、2、3中选择一个合适的数作为a的值代入求值.
26.(12分)如图,在平面直角坐标系中,A、B为x轴上两点,C、D为y轴上的两点,经
过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封
闭曲线称为“蛋线”.已知点C的坐标为(0,),点M是抛物线C2:(<0)的顶点.
(1)求A、B两点的坐标;
(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;
(3)当△BDM为直角三角形时,求的值.
27.(12分)如图1,点为正的边上一点(不与点重合),点分别在边上,且.
(1)求证:;
(2)设,的面积为,的面积为,求(用含的式子表示);
(3)如图2,若点为边的中点,求证: .
图1 图2
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.
【详解】
甲:数据7出现了2次,次数最多,所以众数为7,
排序后最中间的数是7,所以中位数是7,
,
=4.4,
乙:数据8出现了2次,次数最多,所以众数为8,
排序后最中间的数是4,所以中位数是4,
,
=6.4,
所以只有D选项正确,
故选D.
【点睛】
本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.
2、D
【解析】
根据众数、中位数和平均数及方差的定义逐一判断可得.
【详解】
A.甲组同学身高的众数是160,此选项正确;
B.乙组同学身高的中位数是161,此选项正确;
C.甲组同学身高的平均数是161,此选项正确;
D.甲组的方差为,乙组的方差为,甲组的方差大,此选项错误.
故选D.
【点睛】
本题考查了众数、中位数和平均数及方差,掌握众数、中位数和平均数及方差的定义和计算公式是解题的关键.
3、B
【解析】
解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=;
当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=,故选B.
4、D
【解析】
试题分析:科学计数法是指:a×,且,n为原数的整数位数减一.
5、D
【解析】
试题解析:
第①个图形中有 盆鲜花,
第②个图形中有盆鲜花,
第③个图形中有盆鲜花,
…
第n个图形中的鲜花盆数为
则第⑥个图形中的鲜花盆数为
故选C.
6、C
【解析】
分析:将x=-2代入方程即可求出a的值.
详解:将x=-2代入可得:4a-2a-4=0, 解得:a=2,故选C.
点睛:本题主要考查的是解一元一次方程,属于基础题型.解方程的一般方法的掌握是解题的关键.
7、D
【解析】
分析:根据合并同类项法则,同底数幂相除,积的乘方的性质,同底数幂相乘的性质,逐一判断即可.
详解:根据合并同类项法则,可知x3+x3=2x3,故不正确;
根据同底数幂相除,底数不变指数相加,可知a6÷a2=a4,故不正确;
根据积的乘方,等于各个因式分别乘方,可知(-3a3)2=9a6,故不正确;
根据同底数幂相乘,底数不变指数相加,可得x2•x﹣3=x﹣1,故正确.
故选D.
点睛:此题主要考查了整式的相关运算,是一道综合性题目,熟练应用整式的相关性质和运算法则是解题关键.
8、D
【解析】
由 又AD∥BC,所以 故A正确,不符合题意;过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=
BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;
根据相似三角形的判定即可求解,故C正确,不符合题意;
由△BAE∽△ADC,得到CD与AD的大小关系,根据正切函数可求tan∠CAD的值,故D错误,符合题意.
【详解】
A.∵AD∥BC,
∴△AEF∽△CBF,
∴
∵
∴,故A正确,不符合题意;
B. 过D作DM∥BE交AC于N,
∵DE∥BM,BE∥DM,
∴四边形BMDE是平行四边形,
∴
∴BM=CM,
∴CN=NF,
∵BE⊥AC于点F,DM∥BE,
∴DN⊥CF,
∴DF=DC,
∴∠DCF=∠DFC,故B正确,不符合题意;
C. 图中与△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5个,故C正确,不符合题意;
D. 设AD=a,AB=b,由△BAE∽△ADC,有
∵tan∠CAD 故D错误,符合题意.
故选:D.
【点睛】
考查相似三角形的判定,矩形的性质,解直角三角形,掌握相似三角形的判定方法是解题的关键.
9、B
【解析】
根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.
【详解】
根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.
故选B.
【点睛】
此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.
10、C
【解析】
接利用合并同类项法则以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.
【详解】
A、无法计算,故此选项错误;
B、a2•a3=a5,故此选项错误;
C、a3÷a2=a,正确;
D、(a2b)2=a4b2,故此选项错误.
故选C.
【点睛】
此题主要考查了合并同类项以及积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.
11、C
【解析】
根据倒数的定义,分别进行判断即可得出答案.
【详解】
∵①1和1;1×1=1,故此选项正确;
②-1和1;-1×1=-1,故此选项错误;
③0和0;0×0=0,故此选项错误;
④−和−1,-×(-1)=1,故此选项正确;
∴互为倒数的是:①④,
故选C.
【点睛】
此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
12、C
【解析】
试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.
故选C.
考点:三视图
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
根据平移规律“左加右减,上加下减”填空.
【详解】
解:将抛物线y=(x+m)1向右平移1个单位后,得到抛物线解析式为y=(x+m-1)1.其对称轴为:x=1-m=0,
解得m=1.
故答案是:1.
【点睛】
主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.
14、2.35×1
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:将235000000用科学记数法表示为:2.35×1.
故答案为:2.35×1.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
15、m+2n
【解析】分析:先去括号,再合并同类项即可得.
详解:原式=3m-2m+2n=m+2n,
故答案为:m+2n.
点睛:本题主要考查整式的加减,解题的关键是掌握去括号与合并同类项的法则.
16、a(3a+1)
【解析】
3a2+a=a(3a+1),
故答案为a(3a+1).
17、8
【解析】
主视图、俯视图是分别从物体正面、上面看,所得到的图形.
【详解】
由俯视图可知:底层最少有5个小立方体,
由主视图可知:第二层最少有2个小立方体,第三层最少有1个小正方体,
∴搭成这个几何体的小正方体的个数最少是5+2+1=8(个).
故答案为:8
【点睛】
考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.
18、1 1
【解析】
根据长方形的对边相等,每一个角都是直角可得AB=CD,AD=BC,∠BAD=∠C=90°,然后利用“边角边”证明Rt△ABD和Rt△CDB全等;根据等底等高的三角形面积相等解答.
【详解】
有,Rt△ABD≌Rt△CDB,
理由:在长方形ABCD中,AB=CD,AD=BC,∠BAD=∠C=90°,
在Rt△ABD和Rt△CDB中,
,
∴Rt△ABD≌Rt△CDB(SAS);
有,△BFD与△BFA,△ABD与△AFD,△ABE与△DFE,△AFD与△BCD面积相等,但不全等.
故答案为:1;1.
【点睛】
本题考查了全等三角形的判定,长方形的性质,以及等底等高的三角形的面积相等.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1,0)、(﹣2,0)
【解析】
试题分析:抛物线与x轴交点的纵坐标等于零,由此解答即可.
试题解析:解:令,即.
解得:,.
∴该抛物线与轴的交点坐标为(-2,0),(1,0).
20、(1)证明见解析;(2)从运动开始经过2s或s或s或s时,△BEP为等腰三角形.
【解析】
(1)根据内错角相等,得到两边平行,然后再根据三角形内角和等于180度得到另一对内错角相等,从而证得原四边形是平行四边形;(2)分别考虑P在BC和DA上的情况求出t的值.
【详解】
解:(1)∵∠BAC=∠ACD=90°,
∴AB∥CD,
∵∠B=∠D,∠B+∠BAC+∠ACB=∠D+∠ACD+∠DAC=180°,
∴∠DAC=∠ACB,
∴AD∥BC,
∴四边形ABCD是平行四边形.
(2)∵∠BAC=90°,BC=5cm,AB=3cm,′
由勾股定理得:AC=4cm,
即AB、CD间的最短距离是4cm,
∵AB=3cm,AE=AB,
∴AE=1cm,BE=2cm,
设经过ts时,△BEP是等腰三角形,
当P在BC上时,
①BP=EB=2cm,
t=2时,△BEP是等腰三角形;
②BP=PE,
作PM⊥AB于M,
∴BM=ME=BE=1cm
∵cos∠ABC=,
∴BP=cm,
t=时,△BEP是等腰三角形;
③BE=PE=2cm,
作EN⊥BC于N,则BP=2BN,
∴cosB=,
∴,
BN=cm,
∴BP=,
∴t=时,△BEP是等腰三角形;
当P在CD上不能得出等腰三角形,
∵AB、CD间的最短距离是4cm,CA⊥AB,CA=4cm,
当P在AD上时,只能BE=EP=2cm,
过P作PQ⊥BA于Q,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠QAD=∠ABC,
∵∠BAC=∠Q=90°,
∴△QAP∽△ABC,
∴PQ:AQ:AP=4:3:5,
设PQ=4xcm,AQ=3xcm,
在△EPQ中,由勾股定理得:(3x+1)2+(4x)2=22,
∴x= ,
AP=5x=cm,
∴t=5+5+3﹣=,
答:从运动开始经过2s或s或s或s时,△BEP为等腰三角形.
【点睛】
本题主要考查平行四边形的判定定理及一元二次方程的解法,要求学生能够熟练利用边角关系解三角形.
21、(1)证明见解析;(2)25°.
【解析】
试题分析: (1)根据等量代换可求得∠AOD=∠BOC,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC,根据三角形全等的判定AAS证得△AOD≌△BOC,从而得证结论.
(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA的度数,然后利用圆周角定理来求∠ABC的度数.
试题解析:(1)∵∠AOC=∠BOD
∴∠AOC -∠COD=∠BOD-∠COD
即∠AOD=∠BOC
∵四边形ABCD是矩形
∴∠A=∠B=90°,AD=BC
∴
∴AO=OB
(2)解:∵AB是的直径,PA与相切于点A,
∴PA⊥AB,
∴∠A=90°.
又∵∠OPA=40°,
∴∠AOP=50°,
∵OB=OC,
∴∠B=∠OCB.
又∵∠AOP=∠B+∠OCB,
∴.
22、(1);;(2)点P坐标为(,).
【解析】
(1)将F(4,)代入,即可求出反比例函数的解析式;再根据求出E点坐标,将E、F两点坐标代入,即可求出一次函数解析式;
(2)先求出△EBF的面积,
点P是线段EF上一点,可设点P坐标为,
根据面积公式即可求出P点坐标.
【详解】
解:(1)∵反比例函数经过点,
∴n=2,
反比例函数解析式为.
∵的图象经过点E(1,m),
∴m=2,点E坐标为(1,2).
∵直线 过点,点,
∴,解得,
∴一次函数解析式为;
(2)∵点E坐标为(1,2),点F坐标为,
∴点B坐标为(4,2),
∴BE=3,BF=,
∴,
∴ .
点P是线段EF上一点,可设点P坐标为,
∴,
解得,
∴点P坐标为.
【点睛】
本题主要考查反比例函数,一次函数的解析式以及三角形的面积公式.
23、(1)补充表格见解析;(2)①61;②见解析.
【解析】
(1)根据所给数据分析补充表格即可.(2)①根据概率公式计算即可. ②根据平均数、中位数分别进行分析并根据分析结果给出建议即可.
【详解】
(1)补充表格如下:
范围
25≤x≤29
30≤x≤34
35≤x≤39
40≤x≤44
45≤x≤49
50≤x≤54
55≤x≤59
人数
1
0
3
2
7
3
4
(2)①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为136×≈61,
故答案为:61;
②从平均数角度看,该校女生1分钟仰卧起坐的平均成绩高于区县水平,整体水平较好;
从中位数角度看,该校成绩中等水平偏上的学生比例低于区县水平,该校测试成绩的满分率低于区县水平;
建议:该校在保持学校整体水平的同事,多关注接近满分的学生,提高满分成绩的人数.
【点睛】
本题考查的是统计表的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.
24、(1)每行驶1千米纯用电的费用为0.26元.(2)至少需用电行驶74千米.
【解析】
(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;
(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.
【详解】
(1)设每行驶1千米纯用电的费用为x元,根据题意得:
=
解得:x=0.26
经检验,x=0.26是原分式方程的解,
答:每行驶1千米纯用电的费用为0.26元;
(2)从A地到B地油电混合行驶,用电行驶y千米,得:
0.26y+(﹣y)×(0.26+0.50)≤39
解得:y≥74,即至少用电行驶74千米.
25、-1.
【解析】
根据分式的加法和除法可以化简题目中的式子,然后在、2、3中选择一个使得原分式有意义的值代入化简后的式子即可解答本题.
【详解】
,
当时,原式.
故答案为:-1.
【点睛】
本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
26、(1)A(,0)、B(3,0).
(2)存在.S△PBC最大值为
(3)或时,△BDM为直角三角形.
【解析】
(1)在中令y=0,即可得到A、B两点的坐标.
(2)先用待定系数法得到抛物线C1的解析式,由S△PBC = S△POC+ S△BOP–S△BOC得到△PBC面积的表达式,根据二次函数最值原理求出最大值.
(3)先表示出DM2,BD2,MB2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m的值.
【详解】
解:(1)令y=0,则,
∵m<0,∴,解得:,.
∴A(,0)、B(3,0).
(2)存在.理由如下:
∵设抛物线C1的表达式为(),
把C(0,)代入可得,.
∴C1的表达式为:,即.
设P(p,),
∴ S△PBC = S△POC+ S△BOP–S△BOC=.
∵<0,∴当时,S△PBC最大值为.
(3)由C2可知: B(3,0),D(0,),M(1,),
∴BD2=,BM2=,DM2=.
∵∠MBD<90°, ∴讨论∠BMD=90°和∠BDM=90°两种情况:
当∠BMD=90°时,BM2+ DM2= BD2,即+=,
解得:,(舍去).
当∠BDM=90°时,BD2+ DM2= BM2,即+=,
解得:,(舍去) .
综上所述,或时,△BDM为直角三角形.
27、(1)详见解析;(1)详见解析;(3)详见解析.
【解析】
(1)根据两角对应相等的两个三角形相似即可判断;
(1)如图1中,分别过E,F作EG⊥BC于G,FH⊥BC于H,S1=•BD•EG=•BD•EG=•a•BE•sin60°=•a•BE,S1=•CD•FH=•b•CF,可得S1•S1=ab•BE•CF,由(1)得△BDE∽△CFD,,即BE•FC=BD•CD=ab,即可推出S1•S1=a1b1;
(3)想办法证明△DFE∽△CFD,推出,即DF1=EF•FC;
【详解】
(1)证明:如图1中,
在△BDE中,∠BDE+∠DEB+∠B=180°,又∠BDE+∠EDF+∠FDC=180°,
∴∠BDE+∠DEB+∠B=∠BDE+∠EDF+∠FDC,
∵∠EDF=∠B,
∴∠DEB=∠FDC,
又∠B=∠C,
∴△BDE∽△CFD.
(1)如图1中,分别过E,F作EG⊥BC于G,FH⊥BC于H,
S1=•BD•EG=•BD•EG=•a•BE•sin60°=•a•BE,S1=•CD•FH=•b•CF,
∴S1•S1=ab•BE•CF
由(1)得△BDE∽△CFD,
∴,即BE•FC=BD•CD=ab,
∴S1•S1=a1b1.
(3)由(1)得△BDE∽△CFD,
∴,
又BD=CD,
∴,
又∠EDF=∠C=60°,
∴△DFE∽△CFD,
∴,即DF1=EF•FC.
【点睛】
本题考查了相似形综合题、等边三角形的性质、相似三角形的判定和性质、三角形的面积等知识,解题的关键是正确寻找相似三角形的相似的条件.
2023-2024学年湖南省长沙市周南石燕湖中学九上数学期末检测模拟试题含答案: 这是一份2023-2024学年湖南省长沙市周南石燕湖中学九上数学期末检测模拟试题含答案,共6页。试卷主要包含了如图,在菱形中,,且连接则等内容,欢迎下载使用。
2023-2024学年湖南省长沙市周南石燕湖中学九年级数学第一学期期末监测模拟试题含答案: 这是一份2023-2024学年湖南省长沙市周南石燕湖中学九年级数学第一学期期末监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,已知,要使有意义,则x的取值范围为等内容,欢迎下载使用。
2023-2024学年湖南省长沙市周南石燕湖中学数学八上期末达标检测试题含答案: 这是一份2023-2024学年湖南省长沙市周南石燕湖中学数学八上期末达标检测试题含答案,共8页。试卷主要包含了如图,已知一次函数的图象经过A,估计+1的值应在等内容,欢迎下载使用。