|学案下载
搜索
    上传资料 赚现金
    备战中考初中数学导练学案50讲—第45讲二次函数与三角形的综合(讲练版)
    立即下载
    加入资料篮
    备战中考初中数学导练学案50讲—第45讲二次函数与三角形的综合(讲练版)01
    备战中考初中数学导练学案50讲—第45讲二次函数与三角形的综合(讲练版)02
    备战中考初中数学导练学案50讲—第45讲二次函数与三角形的综合(讲练版)03
    还剩43页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    备战中考初中数学导练学案50讲—第45讲二次函数与三角形的综合(讲练版)

    展开
    这是一份备战中考初中数学导练学案50讲—第45讲二次函数与三角形的综合(讲练版),共46页。学案主要包含了疑难点拨等内容,欢迎下载使用。

    备战中考初中数学导练学案50讲
    第45讲 二次函数与三角形的综合
    【疑难点拨】
    1.首先要明确各种三角形的性质以及判定;
    2.理解等腰三角形的特征,明确腰相等,可以任意两腰相等;(1)通过“两圆一线”可以找到所有满足条件的等腰三角形,要求的点(不与A、B点重合)即在两圆上以及两圆的公共弦上 ;(2)通过“两线一圆”可以找到所有满足条件的直角三角形,要求的点(不与A、B点重合)即在圆上以及在两条与直径AB垂直的直线上。
    3.理解直角三角形的特征,明确有一个角是直角,可以是任意的内角;
    4.先研究三角形的性质,再将三角形放到二次函数图像中进行综合运用;
    5.充分运用数学结合、转化、方程等数学思想来帮助解题。
    6. 二次函数和等腰三角形考察的重点一般是以点,线段为依托,动点和函数相结合产生的问题。而与直角三角形组成的一般就是构造相似,构造圆以及勾股定理相组合的考点。
    7. 抛物线与直线形的结合表现形式之一是,以抛物线为载体,探讨是否存在一些点, 使能构成某些特殊三角形,有以下常见的基本形式。(1)抛物线上的点能否构成等腰三角形;(2)抛物线上的点能否构成直角三角形;(3)抛物线上的点能否构成相似三角形;解决这类问题的基本思路:假设存在,数形结合,分类归纳,逐-考察。
    【基础篇】
    一、选择题:
    1. (2017年江苏扬州)如图,已知△ABC的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是(  ) 版权所有

    A.b≤﹣2 B.b<﹣2 C.b≥﹣2 D.b>﹣2
    2. (2017.江苏宿迁)如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=2cm,点P在边AC上,从点A向点C移动,点Q在边CB上,从点C向点B移动.若点P,Q均以1cm/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是(  )

    A.20cm B.18cm C.2cm D.3cm
    3. (2018•黄冈)已知直线l:y=kx+1与抛物线y=x2﹣4x.
    (1)求证:直线l与该抛物线总有两个交点;
    (2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.
    4. (2017浙江衢州)定义:如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P在该抛物线上(P点与A、B两点不重合),如果△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点.

    (1)直接写出抛物线y=﹣x2+1的勾股点的坐标.
    (2)如图2,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1,)是抛物线C的勾股点,求抛物线C的函数表达式.
    (3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ=S△ABP的Q点(异于点P)的坐标.
    5. (2018·辽宁大连·12分)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.
    (1)填空:抛物线的顶点坐标为 (用含m的代数式表示);
    (2)求△ABC的面积(用含a的代数式表示);
    (3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.

    6. (2017乌鲁木齐)如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(﹣1,0),B(4,m)两点,且抛物线经过点C(5,0).
    (1)求抛物线的解析式;
    (2)点P是抛物线上的一个动点(不与点A、点B重合),过点P作直线PD⊥x轴于点D,交直线AB于点E.
    ①当PE=2ED时,求P点坐标;
    ②是否存在点P使△BEC为等腰三角形?若存在请直接写出点P的坐标;若不存在,请说明理由.

    7. (2018·云南省昆明·9分)如图,抛物线y=ax2+bx过点B(1,﹣3),对称轴是直线x=2,且抛物线与x轴的正半轴交于点A.
    (1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范图;
    (2)在第二象限内的抛物线上有一点P,当PA⊥BA时,求△PAB的面积.

    8. (2017广西)如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.
    (1)写出C,D两点的坐标(用含a的式子表示);
    (2)设S△BCD:S△ABD=k,求k的值;
    (3)当△BCD是直角三角形时,求对应抛物线的解析式.

    9. (2018•黑龙江)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.
    (1)求此抛物线的解析式.
    (2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.




    10. (2017贵州安顺)如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.
    (1)求该抛物线的解析式;
    (2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
    (3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).


    【能力篇】
    11. (2018·广西贺州·12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A.B两点(A在B的左侧),且OA=3,OB=1,与y轴交于C(0,3),抛物线的顶点坐标为D(﹣1,4).
    (1)求A.B两点的坐标;
    (2)求抛物线的解析式;
    (3)过点D作直线DE∥y轴,交x轴于点E,点P是抛物线上B.D两点间的一个动点(点P不与B.D两点重合),PA.PB与直线DE分别交于点F、G,当点P运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由.


    12. (2018·四川省攀枝花)如图,对称轴为直线x=1的抛物线y=x2﹣bx+c与x轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于C点,且+=﹣.
    (1)求抛物线的解析式;
    (2)抛物线顶点为D,直线BD交y轴于E点;
    ①设点P为线段BD上一点(点P不与B.D两点重合),过点P作x轴的垂线与抛物线交于点F,求△BDF面积的最大值;
    ②在线段BD上是否存在点Q,使得∠BDC=∠QCE?若存在,求出点Q的坐标;若不存在,请说明理由.


    13. (2017毕节)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.
    (1)求这个二次函数的解析式;
    (2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;
    (3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.





    14. (2018·辽宁省沈阳市)(12.00分)如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.
    (1)求抛物线C1的表达式;
    (2)直接用含t的代数式表示线段MN的长;
    (3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;
    (4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.



    15. (2018·辽宁省盘锦市)如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A.B两点,并与过A点的直线y=﹣x﹣1交于点C.
    (1)求抛物线解析式及对称轴;
    (2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;
    (3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.
    问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.


    16. (2018•乐山•13分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A.B两点,交y轴于点C(0,﹣),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=.
    (1)求抛物线的解析式;
    (2)动点P从点B出发,沿x轴正方形以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动时间为t秒.
    ①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由.
    ②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.



    17. (2018·广西梧州·12分)如图,抛物线y=ax2+bx﹣与x轴交于A(1,0)、B(6,0)两点,D是y轴上一点,连接DA,延长DA交抛物线于点E.
    (1)求此抛物线的解析式;
    (2)若E点在第一象限,过点E作EF⊥x轴于点F,△ADO与△AEF的面积比为=,求出点E的坐标;
    (3)若D是y轴上的动点,过D点作与x轴平行的直线交抛物线于M、N两点,是否存在点D,使DA2=DM•DN?若存在,请求出点D的坐标;若不存在,请说明理由.




    18. (2018·辽宁省阜新市)如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.
    (1)求这个二次函数的表达式;
    (2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;
    (3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.




    【探究篇】
    19. (2018·湖北十堰·12分)已知抛物线y= x2+bx+c经过点A(﹣2,0),B(0、﹣4)与x轴交于另一点C,连接BC.
    (1)求抛物线的解析式;
    (2)如图,P是第一象限内抛物线上一点,且S△PBO=S△PBC,求证:AP∥BC;
    (3)在抛物线上是否存在点D,直线BD交x轴于点E,使△ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请求出点D的坐标;若不存在,请说明理由.




    20. (2017四川眉山)如图,抛物线y=ax2+bx﹣2与x轴交于A、B两点,与y轴交于C点,已知A(3,0),且M(1,﹣)是抛物线上另一点.
    (1)求a、b的值;
    (2)连结AC,设点P是y轴上任一点,若以P、A、C三点为顶点的三角形是等腰三角形,求P点的坐标;
    (3)若点N是x轴正半轴上且在抛物线内的一动点(不与O、A重合),过点N作NH∥AC交抛物线的对称轴于H点.设ON=t,△ONH的面积为S,求S与t之间的函数关系式.










    第45讲 二次函数与三角形的综合
    【疑难点拨】
    1.首先要明确各种三角形的性质以及判定;
    2.理解等腰三角形的特征,明确腰相等,可以任意两腰相等;(1)通过“两圆一线”可以找到所有满足条件的等腰三角形,要求的点(不与A、B点重合)即在两圆上以及两圆的公共弦上 ;(2)通过“两线一圆”可以找到所有满足条件的直角三角形,要求的点(不与A、B点重合)即在圆上以及在两条与直径AB垂直的直线上。
    3.理解直角三角形的特征,明确有一个角是直角,可以是任意的内角;
    4.先研究三角形的性质,再将三角形放到二次函数图像中进行综合运用;
    5.充分运用数学结合、转化、方程等数学思想来帮助解题。
    6. 二次函数和等腰三角形考察的重点一般是以点,线段为依托,动点和函数相结合产生的问题。而与直角三角形组成的一般就是构造相似,构造圆以及勾股定理相组合的考点。
    7. 抛物线与直线形的结合表现形式之一是,以抛物线为载体,探讨是否存在一些点, 使能构成某些特殊三角形,有以下常见的基本形式。(1)抛物线上的点能否构成等腰三角形;(2)抛物线上的点能否构成直角三角形;(3)抛物线上的点能否构成相似三角形;解决这类问题的基本思路:假设存在,数形结合,分类归纳,逐-考察。
    【基础篇】
    一、选择题:
    1. (2017年江苏扬州)如图,已知△ABC的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是(  ) 版权所有

    A.b≤﹣2 B.b<﹣2 C.b≥﹣2 D.b>﹣2
    【考点】H4:二次函数图象与系数的关系.
    【分析】抛物线经过C点时b的值即可.
    【解答】解:把C(2,1)代入y=x2+bx+1,得
    22+2b+1=1,
    解得b=﹣2.
    故b的取值范围是b≥﹣2.
    故选:C.
    2. (2017.江苏宿迁)如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=2cm,点P在边AC上,从点A向点C移动,点Q在边CB上,从点C向点B移动.若点P,Q均以1cm/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是(  )

    A.20cm B.18cm C.2cm D.3cm
    【考点】H7:二次函数的最值;KQ:勾股定理.
    【分析】根据已知条件得到CP=6﹣t,得到PQ===,于是得到结论.
    【解答】解:∵AP=CQ=t,
    ∴CP=6﹣t,
    ∴PQ===,
    ∵0≤t≤2,
    ∴当t=2时,PQ的值最小,
    ∴线段PQ的最小值是2,
    故选C.
    3. (2018•黄冈)已知直线l:y=kx+1与抛物线y=x2﹣4x.
    (1)求证:直线l与该抛物线总有两个交点;
    (2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.
    【分析】(1)联立两解析式,根据判别式即可求证;
    (2)画出图象,求出A、B的坐标,再求出直线y=﹣2x+1与x轴的交点C,然后利用三角形的面积公式即可求出答案.
    【解答】解:(1)联立
    化简可得:x2﹣(4+k)x﹣1=0,
    ∴△=(4+k)2+4>0,
    故直线l与该抛物线总有两个交点;
    (2)当k=﹣2时,
    ∴y=﹣2x+1
    过点A作AF⊥x轴于F,过点B作BE⊥x轴于E,
    ∴联立
    解得:或
    ∴A(1﹣,2﹣1),B(1+,﹣1﹣2)
    ∴AF=2﹣1,BE=1+2
    易求得:直线y=﹣2x+1与x轴的交点C为(,0)
    ∴OC=
    ∴S△AOB=S△AOC+S△BOC
    =OC•AF+OC•BE
    =OC(AF+BE)
    =××(2﹣1+1+2)
    =

    4. (2017浙江衢州)定义:如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P在该抛物线上(P点与A、B两点不重合),如果△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点.

    (1)直接写出抛物线y=﹣x2+1的勾股点的坐标.
    (2)如图2,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1,)是抛物线C的勾股点,求抛物线C的函数表达式.
    (3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ=S△ABP的Q点(异于点P)的坐标.
    【考点】HA:抛物线与x轴的交点;H8:待定系数法求二次函数解析式.
    【分析】(1)根据抛物线勾股点的定义即可得;
    (2)作PG⊥x轴,由点P坐标求得AG=1、PG=、PA=2,由tan∠PAB==知∠PAG=60°,从而求得AB=4,即B(4,0),待定系数法求解可得;
    (3)由S△ABQ=S△ABP且两三角形同底,可知点Q到x轴的距离为,据此求解可得.
    【解答】解:(1)抛物线y=﹣x2+1的勾股点的坐标为(0,1);
    (2)抛物线y=ax2+bx过原点,即点A(0,0),
    如图,作PG⊥x轴于点G,

    ∵点P的坐标为(1,),
    ∴AG=1、PG=,PA===2,
    ∵tan∠PAB==,
    ∴∠PAG=60°,
    在Rt△PAB中,AB===4,
    ∴点B坐标为(4,0),
    设y=ax(x﹣4),
    将点P(1,)代入得:a=﹣,
    ∴y=﹣x(x﹣4)=﹣x2+x;
    (3)①当点Q在x轴上方时,由S△ABQ=S△ABP知点Q的纵坐标为,
    则有﹣x2+x=,
    解得:x1=3,x2=1(不符合题意,舍去),
    ∴点Q的坐标为(3,);
    ②当点Q在x轴下方时,由S△ABQ=S△ABP知点Q的纵坐标为﹣,
    则有﹣x2+x=﹣,
    解得:x1=2+,x2=2﹣,
    ∴点Q的坐标为(2+,﹣)或(2﹣,﹣);
    综上,满足条件的点Q有3个:(3,)或(2+,﹣)或(2﹣,﹣).
    5. (2018·辽宁大连·12分)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.
    (1)填空:抛物线的顶点坐标为 (用含m的代数式表示);
    (2)求△ABC的面积(用含a的代数式表示);
    (3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.

    解:(1)∵y=ax2﹣2amx+am2+2m﹣5=a(x﹣m)2+2m﹣5,∴抛物线的顶点坐标为(m,2m﹣5).
    故答案为:(m,2m﹣5).
    (2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示.
    ∵AB∥x轴,且AB=4,∴点B的坐标为(m+2,4a+2m﹣5).
    ∵∠ABC=135°,∴设BD=t,则CD=t,∴点C的坐标为(m+2+t,4a+2m﹣5﹣t).
    ∵点C在抛物线y=a(x﹣m)2+2m﹣5上,∴4a+2m﹣5﹣t=a(2+t)2+2m﹣5,整理,得:at2+(4a+1)t=0,解得:t1=0(舍去),t2=﹣,∴S△ABC=AB•CD=﹣.
    (3)∵△ABC的面积为2,∴﹣ =2,解得:a=﹣,∴抛物线的解析式为y=﹣(x﹣m)2+2m﹣5.
    分三种情况考虑:
    ①当m>2m﹣2,即m<2时,有﹣(2m﹣2﹣m)2+2m﹣5=2,整理,得:m2﹣14m+39=0,解得:m1=7﹣(舍去),m2=7+(舍去);
    ②当2m﹣5≤m≤2m﹣2,即2≤m≤5时,有2m﹣5=2,解得:m=;
    ③当m<2m﹣5,即m>5时,有﹣(2m﹣5﹣m)2+2m﹣5=2,整理,得:m2﹣20m+60=0,解得:m3=10﹣2(舍去),m4=10+2.
    综上所述:m的值为或10+2.

    6. (2017乌鲁木齐)如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(﹣1,0),B(4,m)两点,且抛物线经过点C(5,0).
    (1)求抛物线的解析式;
    (2)点P是抛物线上的一个动点(不与点A、点B重合),过点P作直线PD⊥x轴于点D,交直线AB于点E.
    ①当PE=2ED时,求P点坐标;
    ②是否存在点P使△BEC为等腰三角形?若存在请直接写出点P的坐标;若不存在,请说明理由.

    【考点】HF:二次函数综合题.
    【分析】(1)由直线解析式可求得B点坐标,由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;
    (2)①可设出P点坐标,则可表示出E、D的坐标,从而可表示出PE和ED的长,由条件可知到关于P点坐标的方程,则可求得P点坐标;②由E、B、C三点坐标可表示出BE、CE和BC的长,由等腰三角形的性质可得到关于E点坐标的方程,可求得E点坐标,则可求得P点坐标.
    【解答】解:
    (1)∵点B(4,m)在直线y=x+1上,
    ∴m=4+1=5,
    ∴B(4,5),
    把A、B、C三点坐标代入抛物线解析式可得,解得,
    ∴抛物线解析式为y=﹣x2+4x+5;
    (2)①设P(x,﹣x2+4x+5),则E(x,x+1),D(x,0),
    则PE=|﹣x2+4x+5﹣(x+1)|=|﹣x2+3x+4|,DE=|x+1|,
    ∵PE=2ED,
    ∴|﹣x2+3x+4|=2|x+1|,
    当﹣x2+3x+4=2(x+1)时,解得x=﹣1或x=2,但当x=﹣1时,P与A重合不合题意,舍去,
    ∴P(2,9);
    当﹣x2+3x+4=﹣2(x+1)时,解得x=﹣1或x=6,但当x=﹣1时,P与A重合不合题意,舍去,
    ∴P(6,﹣7);
    综上可知P点坐标为(2,9)或(6,﹣7);
    ②设P(x,﹣x2+4x+5),则E(x,x+1),且B(4,5),C(5,0),
    ∴BE==|x﹣4|,CE==,BC==,
    当△BEC为等腰三角形时,则有BE=CE、BE=BC或CE=BC三种情况,
    当BE=CE时,则|x﹣4|=,解得x=,此时P点坐标为(,);
    当BE=BC时,则|x﹣4|=,解得x=4+或x=4﹣,此时P点坐标为(4+,﹣4﹣8)或(4﹣,4﹣8);
    当CE=BC时,则=,解得x=0或x=4,当x=4时E点与B点重合,不合题意,舍去,此时P点坐标为(0,5);
    综上可知存在满足条件的点P,其坐标为(,)或(4+,﹣4﹣8)或(4﹣,4﹣8)或(0,5).
    7. (2018·云南省昆明·9分)如图,抛物线y=ax2+bx过点B(1,﹣3),对称轴是直线x=2,且抛物线与x轴的正半轴交于点A.
    (1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范图;
    (2)在第二象限内的抛物线上有一点P,当PA⊥BA时,求△PAB的面积.

    【分析】(1)将函数图象经过的点B坐标代入的函数的解析式中,再和对称轴方程联立求出待定系数a和b;
    (2)将AB所在直线的解析式求出,利用直线AP与AB垂直的关系求出直线AP的斜率k,再求直线AP的解析式,求直线AP与x轴交点,求点P的坐标,将△PAB的面积构造成长方形去掉三个三角形的面积.
    【解答】解:(1)由题意得,,解得,
    ∴抛物线的解析式为y=x2﹣2x,
    令y=0,得x2﹣2x=0,解得x=0或2,
    结合图象知,A的坐标为(2,0),
    根据图象开口向上,则y≤0时,自变量x的取值范图是0≤x≤2;
    (2)设直线AB的解析式为y=mx+n,
    则,解得,
    ∴y=3x﹣6,
    设直线AP的解析式为y=kx+c,
    ∵PA⊥BA,∴k=,
    则有,解得c=,

    ∴,解得或,
    ∴点P的坐标为(),
    ∴△PAB的面积=|﹣|×||﹣×||×﹣×|﹣|×||﹣×|2﹣1|×|0﹣(﹣3)|=.
    【点评】本题是二次函数综合题,求出函数解析式是解题的关键,特别是利用待定系数法将两条直线表达式解出,利用点的坐标求三角形的面积是关键.
    8. (2017广西)如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.
    (1)写出C,D两点的坐标(用含a的式子表示);
    (2)设S△BCD:S△ABD=k,求k的值;
    (3)当△BCD是直角三角形时,求对应抛物线的解析式.

    【考点】HF:二次函数综合题.
    【分析】(1)令x=0可求得C点坐标,化为顶点式可求得D点坐标;
    (2)令y=0可求得A、B的坐标,结合D点坐标可求得△ABD的面积,设直线CD交x轴于点E,由C、D坐标,利用待定系数法可求得直线CD的解析式,则可求得E点坐标,从而可表示出△BCD的面积,可求得k的值;
    (3)由B、C、D的坐标,可表示出BC2、BD2和CD2,分∠CBD=90°和∠CDB=90°两种情况,分别利用勾股定理可得到关于a的方程,可求得a的值,则可求得抛物线的解析式.
    【解答】解:
    (1)在y=a(x﹣1)(x﹣3),令x=0可得y=3a,
    ∴C(0,3a),
    ∵y=a(x﹣1)(x﹣3)=a(x2﹣4x+3)=a(x﹣2)2﹣a,
    ∴D(2,﹣a);
    (2)在y=a(x﹣1)(x﹣3)中,令y=0可解得x=1或x=3,
    ∴A(1,0),B(3,0),
    ∴AB=3﹣1=2,
    ∴S△ABD=×2×a=a,
    如图,设直线CD交x轴于点E,设直线CD解析式为y=kx+b,

    把C、D的坐标代入可得,解得,
    ∴直线CD解析式为y=﹣2ax+3a,令y=0可解得x=,
    ∴E(,0),
    ∴BE=3﹣=
    ∴S△BCD=S△BEC+S△BED=××(3a+a)=3a,
    ∴S△BCD:S△ABD=(3a):a=3,
    ∴k=3;
    (3)∵B(3,0),C(0,3a),D(2,﹣a),
    ∴BC2=32+(3a)2=9+9a2,CD2=22+(﹣a﹣3a)2=4+16a2,BD2=(3﹣2)2+a2=1+a2,
    ∵∠BCD<∠BCO<90°,
    ∴△BCD为直角三角形时,只能有∠CBD=90°或∠CDB=90°两种情况,
    ①当∠CBD=90°时,则有BC2+BD2=CD2,即9+9a2+1+a2=4+16a2,解得a=﹣1(舍去)或a=1,此时抛物线解析式为y=x2﹣4x+3;
    ②当∠CDB=90°时,则有CD2+BD2=BC2,即4+16a2+1+a2=9+9a2,解得a=﹣(舍去)或a=,此时抛物线解析式为y=x2﹣2x+;
    综上可知当△BCD是直角三角形时,抛物线的解析式为y=x2﹣4x+3或y=x2﹣2x+.
    9. (2018•黑龙江)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.
    (1)求此抛物线的解析式.
    (2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.

    【分析】(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式;
    (2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标.
    【解答】解:(1)由题意得:x=﹣=﹣=﹣2,c=2,
    解得:b=4,c=2,
    则此抛物线的解析式为y=x2+4x+2;
    (2)∵抛物线对称轴为直线x=﹣2,BC=6,
    ∴B横坐标为﹣5,C横坐标为1,
    把x=1代入抛物线解析式得:y=7,
    ∴B(﹣5,7),C(1,7),
    设直线AB解析式为y=kx+2,
    把B坐标代入得:k=﹣1,即y=﹣x+2,
    作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,
    可得△AQH∽△ABM,
    ∴=,
    ∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,
    ∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:QB=3:5,
    ∵BM=5,
    ∴QH=2或QH=3,
    当QH=2时,把x=﹣2代入直线AB解析式得:y=4,
    此时Q(﹣2,4),直线CQ解析式为y=x+6,令y=0,得到x=﹣6,即P(﹣6,0);
    当QH=3时,把x=﹣3代入直线AB解析式得:y=5,
    此时Q(﹣3,5),直线CQ解析式为y=x+,令y=0,得到x=﹣13,此时P(﹣13,0),
    综上,P的坐标为(﹣6,0)或(﹣13,0).

    10. (2017贵州安顺)如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.
    (1)求该抛物线的解析式;
    (2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
    (3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).

    【考点】HF:二次函数综合题.
    【分析】(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;
    (2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;
    (3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.
    【解答】解:
    (1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,
    ∴B(3,0),C(0,3),
    把B、C坐标代入抛物线解析式可得,解得,
    ∴抛物线解析式为y=x2﹣4x+3;
    (2)∵y=x2﹣4x+3=(x﹣2)2﹣1,
    ∴抛物线对称轴为x=2,P(2,﹣1),
    设M(2,t),且C(0,3),
    ∴MC==,MP=|t+1|,PC==2,
    ∵△CPM为等腰三角形,
    ∴有MC=MP、MC=PC和MP=PC三种情况,
    ①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);
    ②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);
    ③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);
    综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);
    (3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,

    设E(x,x2﹣4x+3),则F(x,﹣x+3),
    ∵0<x<3,
    ∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,
    ∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,
    ∴当x=时,△CBE的面积最大,此时E点坐标为(,),
    即当E点坐标为(,)时,△CBE的面积最大.
    【能力篇】
    11. (2018·广西贺州·12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A.B两点(A在B的左侧),且OA=3,OB=1,与y轴交于C(0,3),抛物线的顶点坐标为D(﹣1,4).
    (1)求A.B两点的坐标;
    (2)求抛物线的解析式;
    (3)过点D作直线DE∥y轴,交x轴于点E,点P是抛物线上B.D两点间的一个动点(点P不与B.D两点重合),PA.PB与直线DE分别交于点F、G,当点P运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由.

    【解答】解:(1)由抛物线y=ax2+bx+c交x轴于A.B两点(A在B的左侧),且OA=3,OB=1,得
    A点坐标(﹣3,0),B点坐标(1,0);
    (2)设抛物线的解析式为y=a(x+3)(x﹣1),
    把C点坐标代入函数解析式,得
    a(0+3)(0﹣1)=3,
    解得a=﹣1,
    抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;
    (3)EF+EG=8(或EF+EG是定值),理由如下:
    过点P作PQ∥y轴交x轴于Q,如图.
    设P(t,﹣t2﹣2t+3),
    则PQ=﹣t2﹣2t+3,AQ=3+t,QB=1﹣t,
    ∵PQ∥EF,
    ∴△AEF∽△AQP,
    ∴=,
    ∴EF===×(﹣t2﹣2t+3)=2(1﹣t);
    又∵PQ∥EG,
    ∴△BEG∽△BQP,
    ∴=,
    ∴EG===2(t+3),
    ∴EF+EG=2(1﹣t)+2(t+3)=8.
    12. (2018·四川省攀枝花)如图,对称轴为直线x=1的抛物线y=x2﹣bx+c与x轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于C点,且+=﹣.
    (1)求抛物线的解析式;
    (2)抛物线顶点为D,直线BD交y轴于E点;
    ①设点P为线段BD上一点(点P不与B.D两点重合),过点P作x轴的垂线与抛物线交于点F,求△BDF面积的最大值;
    ②在线段BD上是否存在点Q,使得∠BDC=∠QCE?若存在,求出点Q的坐标;若不存在,请说明理由.

    解:(1)∵抛物线对称轴为直线x=1
    ∴﹣
    ∴b=2
    由一元二次方程根与系数关系:
    x1+x2=﹣,x1x2=
    ∴+==﹣
    ∴﹣
    则c=﹣3
    ∴抛物线解析式为:y=x2﹣2x﹣3
    (2)由(1)点D坐标为(1,﹣4)
    当y=0时,x2﹣2x﹣3=0
    解得x1=﹣1,x2=3
    ∴点B坐标为(3,0)
    ①设点F坐标为(a,b)
    ∴△BDF的面积S=×(4﹣b)(a﹣1)+(﹣b)(3﹣a)﹣×2×4
    整理的S=2a﹣b﹣6
    ∵b=a2﹣2a﹣3
    ∴S=2a﹣(a2﹣2a﹣3)﹣6=﹣a2+4a﹣3
    ∵a=﹣1<0
    ∴当a=2时,S最大=﹣4+8﹣3=1
    ②存在
    由已知点D坐标为(1,﹣4),点B坐标为(3,0)
    ∴直线BD解析式为:y=2x﹣6
    则点E坐标为(0,﹣6)
    连BC.CD,则由勾股定理

    CB2=(3﹣0)2+(﹣3﹣0)2=18
    CD2=12+(﹣4+3)2=2
    BD2=(﹣4)2+(3﹣1)2=20
    ∴CB2+CD2=BD2
    ∴∠BDC=90°
    ∵∠BDC=∠QCE
    ∴∠QCE=90°
    ∴点Q纵坐标为﹣3
    代入﹣3=2x﹣6
    ∴x=
    ∴存在点Q坐标为(,﹣3)
    13. (2017毕节)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.
    (1)求这个二次函数的解析式;
    (2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;
    (3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.

    【考点】HF:二次函数综合题.
    【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;
    (2)由题意可知点P在线段OC的垂直平分线上,则可求得P点纵坐标,代入抛物线解析式可求得P点坐标;
    (3)过P作PE⊥x轴,交x轴于点E,交直线BC于点F,用P点坐标可表示出PF的长,则可表示出△PBC的面积,利用二次函数的性质可求得△PBC面积的最大值及P点的坐标.
    【解答】解:
    (1)设抛物线解析式为y=ax2+bx+c,
    把A、B、C三点坐标代入可得,解得,
    ∴抛物线解析式为y=x2﹣3x﹣4;
    (2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图1,

    ∴PO=PD,此时P点即为满足条件的点,
    ∵C(0,﹣4),
    ∴D(0,﹣2),
    ∴P点纵坐标为﹣2,
    代入抛物线解析式可得x2﹣3x﹣4=﹣2,解得x=(小于0,舍去)或x=,
    ∴存在满足条件的P点,其坐标为(,﹣2);
    (3)∵点P在抛物线上,
    ∴可设P(t,t2﹣3t﹣4),
    过P作PE⊥x轴于点E,交直线BC于点F,如图2,

    ∵B(4,0),C(0,﹣4),
    ∴直线BC解析式为y=x﹣4,
    ∴F(t,t﹣4),
    ∴PF=(t﹣4)﹣(t2﹣3t﹣4)=﹣t2+4t,
    ∴S△PBC=S△PFC+S△PFB=PF•OE+PF•BE=PF•(OE+BE)=PF•OB=(﹣t2+4t)×4=﹣2(t﹣2)2+8,
    ∴当t=2时,S△PBC最大值为8,此时t2﹣3t﹣4=﹣6,
    ∴当P点坐标为(2,﹣6)时,△PBC的最大面积为8.
    14. (2018·辽宁省沈阳市)(12.00分)如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.
    (1)求抛物线C1的表达式;
    (2)直接用含t的代数式表示线段MN的长;
    (3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;
    (4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.

    【分析】(1)应用待定系数法;
    (2)把x=t带入函数关系式相减;
    (3)根据图形分别讨论∠ANM=90°、∠AMN=90°时的情况.
    (4)根据题意画出满足条件图形,可以找到AN为△KNP对称轴,由对称性找到第一个满足条件Q,再通过延长和圆的对称性找到剩余三个点.利用勾股定理进行计算.
    【解答】解:(1)∵抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1)

    解得:
    ∴抛物线C1:解析式为y=x2+x﹣1
    (2)∵动直线x=t与抛物线C1交于点N,与抛物线C2交于点M
    ∴点N的纵坐标为t2+t﹣1,点M的纵坐标为2t2+t+1
    ∴MN=(2t2+t+1)﹣(t2+t﹣1)=t2+2
    (3)共分两种情况
    ①当∠ANM=90°,AN=MN时,由已知N(t,t2+t﹣1),A(﹣2,1)
    ∴AN=t﹣(﹣2)=t+2
    ∵MN=t2+2
    ∴t2+2=t+2
    ∴t1=0(舍去),t2=1
    ∴t=1
    ②当∠AMN=90°,AN=MN时,由已知M(t,2t2+t+1),A(﹣2,1)
    ∴AM=t﹣(﹣2)=t+2,
    ∵MN=t2+2
    ∴t2+2=t+2
    ∴t1=0,t2=1(舍去)
    ∴t=0
    故t的值为1或0
    (4)由(3)可知t=1时M位于y轴右侧,根据题意画出示意图如图:

    易得K(0,3),B.O、N三点共线
    ∵A(﹣2,1)N(1,1)P(0,﹣1)
    ∴点K、P关于直线AN对称
    设⊙K与y轴下方交点为Q2,则其坐标为(0,2)
    ∴Q2与点P关于直线AN对称
    ∴Q2是满足条件∠KNQ=∠BNP.
    则NQ2延长线与⊙K交点Q1,Q1.Q2关于KN的对称点Q3.Q4也满足∠KNQ=∠BNP.
    由图形易得Q1(﹣3,3)
    设点Q3坐标为(a,b),由对称性可知Q3N=NQ1=BN=2
    由∵⊙K半径为1

    解得,1
    同理,设点Q4坐标为(a,b),由对称性可知Q4N=NQ2=NO=

    解得

    ∴满足条件的Q点坐标为:(0,2)、(﹣3,3)、(,)、(,)
    【点评】本题为代数几何综合题,考查了二次函数基本性质.解答过程中应用了分类讨论、数形结合以及构造数学模型等数学思想.
    15. (2018·辽宁省盘锦市)如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A.B两点,并与过A点的直线y=﹣x﹣1交于点C.
    (1)求抛物线解析式及对称轴;
    (2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;
    (3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.
    问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.

    【解答】解:(1)把A(﹣2,0),B(4,0)代入抛物线y=ax2+bx﹣1,得
    解得
    ∴抛物线解析式为:y=
    ∴抛物线对称轴为直线x=﹣
    (2)存在
    使四边形ACPO的周长最小,只需PC+PO最小
    ∴取点C(0,﹣1)关于直线x=1的对称点C′(2,﹣1),连C′O与直线x=1的交点即为P点.
    设过点C′、O直线解析式为:y=kx
    ∴k=﹣
    ∴y=﹣
    则P点坐标为(1,﹣)
    (3)当△AOC∽△MNC时,如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E

    ∵∠ACO=∠NCD,∠AOC=∠CND=90°
    ∴∠CDN=∠CAO
    由相似,∠CAO=∠CMN
    ∴∠CDN=∠CMN
    ∵MN⊥AC
    ∴M、D关于AN对称,则N为DM中点
    设点N坐标为(a,﹣ a﹣1)
    由△EDN∽△OAC
    ∴ED=2a
    ∴点D坐标为(0,﹣)
    ∵N为DM中点
    ∴点M坐标为(2a,)
    把M代入y=,解得a=4
    则N点坐标为(4,﹣3)
    当△AOC∽△CNM时,∠CAO=∠NCM
    ∴CM∥AB则点C关于直线x=1的对称点C′即为点N
    由(2)N(2,﹣1)
    ∴N点坐标为(4,﹣3)或(2,﹣1)
    16. (2018•乐山•13分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A.B两点,交y轴于点C(0,﹣),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=.
    (1)求抛物线的解析式;
    (2)动点P从点B出发,沿x轴正方形以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动时间为t秒.
    ①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由.
    ②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.

    解:(1)∵OA=1,OB=4
    ∴A(1,0),B(﹣4,0)
    设抛物线的解析式为y=a(x+4)(x﹣1)
    ∵点C(0,﹣)在抛物线上
    ∴﹣
    解得a=
    ∴抛物线的解析式为y=
    (2)存在t,使得△ADC与△PQA相似.
    理由:①在Rt△AOC中,OA=1,OC=
    则tan∠ACO=
    ∵tan∠OAD=
    ∴∠OAD=∠ACO
    ∵直线l的解析式为y=
    ∴D(0,﹣)
    ∵点C(0,﹣)
    ∴CD=
    由AC2=OC2+OA2,得AC=
    在△AQP中,AP=AB﹣PB=5﹣2t,AQ=t
    由∠PAQ=∠ACD,要使△ADC与△PQA相似
    只需或
    则有或
    解得t1=,t2=
    ∵t1<2.5,t2<2.5
    ∴存在t=或t=,使得△ADC与△PQA相似
    ②存在t,使得△APQ与△CAQ的面积之和最大
    理由:作PF⊥AQ于点F,CN⊥AQ于N
    在△APF中,PF=AP•sin∠PAF=
    在△AOD中,由AD2=OD2+OA2,得AD=
    在△ADC中,由S△ADC=
    ∴CN=
    ∴S△AQP+S△AQC=
    =﹣
    ∴当t=时,△APQ与△CAQ的面积之和最大
    17. (2018·广西梧州·12分)如图,抛物线y=ax2+bx﹣与x轴交于A(1,0)、B(6,0)两点,D是y轴上一点,连接DA,延长DA交抛物线于点E.
    (1)求此抛物线的解析式;
    (2)若E点在第一象限,过点E作EF⊥x轴于点F,△ADO与△AEF的面积比为=,求出点E的坐标;
    (3)若D是y轴上的动点,过D点作与x轴平行的直线交抛物线于M、N两点,是否存在点D,使DA2=DM•DN?若存在,请求出点D的坐标;若不存在,请说明理由.

    【分析】(1)根据待定系数法,可得函数解析式;
    (2)根据相似三角形的判定与性质,可得AF的长,根据自变量与函数值的对应关系,可得答案;
    (3)根据两点间距离,可得AD的长,根据根与系数的关系,可得x1•x2,根据DA2=DM•DN,可得关于n的方程,根据解方程,可得答案.
    【解答】解:(1)将A(1,0),B(6,0)代入函数解析式,得

    解得,
    抛物线的解析式为y=﹣x2+x﹣;
    (2)∵EF⊥x轴于点F,
    ∴∠AFE=90°.
    ∵∠AOD=∠AFE=90°,∠OAD=∠FAE,
    ∴△AOD∽△AFE.
    ∵==,
    ∵AO=1,
    ∴AF=3,OF=3+1=4,
    当x=4时,y=﹣×42+×4﹣=,
    ∴E点坐标是(4,),
    (3)存在点D,使DA2=DM•DN,理由如下:
    设D点坐标为(0,n),
    AD2=1+n2,
    当y=n时,﹣x2+x﹣=n
    化简,得
    ﹣3x2+21x﹣18﹣4n=0,
    设方程的两根为x1,x2,
    x1•x2=
    DM=x1,DN=x2,
    DA2=DM•DN,即1+n2=,
    化简,得
    3n2﹣4n﹣15=0,
    解得n1=,n2=3,
    ∴D点坐标为(0,﹣)或(0,3).
    【点评】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用相似三角形的判定与性质得出AF的长;解(3)的关键是利用根与系数的关系得出x1•x2,又利用了解方程.
    18. (2018·辽宁省阜新市)如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.
    (1)求这个二次函数的表达式;
    (2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;
    (3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.

    【解答】解:(1)将A(1,0),B(3,0)代入函数解析式,得
    ,解得,这个二次函数的表达式是y=x2﹣4x+3;
    (2)当x=0时,y=3,即点C(0,3),设BC的表达式为y=kx+b,将点B(3,0)点C(0,3)代入函数解析式,得
    ,解这个方程组,得

    直线BC的解析是为y=﹣x+3,过点P作PE∥y轴,交直线BC于点E(t,﹣t+3),PE=﹣t+3﹣(t﹣4t+3)=﹣t2+3t,∴S△BCP=S△BPE+SCPE= (﹣t2+3t)×3=﹣(t﹣)2+ .
    ∵﹣<0,∴当t= 时,S△BCP最大=

    (3)M(m,﹣m+3),N(m,m2﹣4m+3)
    MN=m2﹣3m,BM= |m﹣3|,当MN=BM时,①m2﹣3m= (m﹣3),解得m= ,②m2﹣3m=﹣(m﹣3),解得m=﹣
    当BN=MN时,∠NBM=∠BMN=45°,m2﹣4m+3=0,解得m=1或m=3(舍)
    当BM=BN时,∠BMN=∠BNM=45°,﹣(m2﹣4m+3)=﹣m+3,解得m=2或m=3(舍),当△BMN是等腰三角形时,m的值为,﹣,1,2.
    【探究篇】
    19. (2018·湖北十堰·12分)已知抛物线y= x2+bx+c经过点A(﹣2,0),B(0、﹣4)与x轴交于另一点C,连接BC.
    (1)求抛物线的解析式;
    (2)如图,P是第一象限内抛物线上一点,且S△PBO=S△PBC,求证:AP∥BC;
    (3)在抛物线上是否存在点D,直线BD交x轴于点E,使△ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请求出点D的坐标;若不存在,请说明理由.

    【分析】(1)利用待定系数法求抛物线的解析式;
    (2)令y=0求抛物线与x轴的交点C的坐标,作△POB和△PBC的高线,根据面积相等可得OE=CF,证明△OEG≌△CFG,则OG=CG=2,根据三角函数列式可得P的坐标,利用待定系数法求一次函数AP和BC的解析式,k相等则两直线平行;
    (3)先利用概率的知识分析A,B,C,E中的三点为顶点的三角形,有两个三角形与△ABE有可能相似,即△ABC和△BCE,
    ①当△ABE与以A,B,C中的三点为顶点的三角形相似,如图2,根据存在公共角∠BAE=∠BAC,可得△ABE∽△ACB,列比例式可得E的坐标,利用待定系数法求直线BE的解析式,与抛物线列方程组可得交点D的坐标;
    ②当△ABE与以B,C.E中的三点为顶点的三角形相似,如图3,同理可得结论.
    【解答】解:(1)把点A(﹣2,0),B(0、﹣4)代入抛物线y=x2+bx+c中得:
    ,解得:,
    ∴抛物线的解析式为:y=x2﹣x﹣4;
    (2)当y=0时,x2﹣x﹣4=0,
    解得:x=﹣2或4,
    ∴C(4,0),
    如图1,过O作OE⊥BP于E,过C作CF⊥BP于F,设PB交x轴于G,
    ∵S△PBO=S△PBC,
    ∴,
    ∴OE=CF,
    易得△OEG≌△CFG,
    ∴OG=CG=2,
    设P(x,x2﹣x﹣4),过P作PM⊥y轴于M,
    tan∠PBM==,
    ∴BM=2PM,
    ∴4+x2﹣x﹣4=2x,
    x2﹣6x=0,
    x1=0(舍),x2=6,
    ∴P(6,8),
    易得AP的解析式为:y=x+2,
    BC的解析式为:y=x﹣4,
    ∴AP∥BC;
    (3)以A,B,C,E中的三点为顶点的三角形有△ABC.△ABE.△ACE.△BCE,四种,其中△ABE重合,不符合条件,△ACE不能构成三角形,
    ∴当△ABE与以A,B,C,E中的三点为顶点的三角形相似,存在两个三角形:△ABC和△BCE,
    ①当△ABE与以A,B,C中的三点为顶点的三角形相似,如图2,
    ∵∠BAE=∠BAC,∠ABE≠∠ABC,
    ∴∠ABE=∠ACB=45°,
    ∴△ABE∽△ACB,
    ∴,
    ∴,
    ∴AE=,
    ∴E(,0),
    ∵B(0,﹣4),
    易得BE:y=-4,
    则x2﹣x﹣4=x﹣4,
    x1=0(舍),x2=,
    ∴D(,);
    ②当△ABE与以B,C.E中的三点为顶点的三角形相似,如图3,
    ∵∠BEA=∠BEC,
    ∴当∠ABE=∠BCE时,△ABE∽△BCE,
    ∴,
    设BE=2m,CE=4m,
    Rt△BOE中,由勾股定理得:BE2=OE2+OB2,
    ∴,
    3m2﹣8m+8=0,
    (m﹣2)(3m﹣2)=0,
    m1=2,m2=,
    ∴OE=4m﹣4=12或,
    ∵OE=<2,∠AEB是钝角,此时△ABE与以B,C.E中的三点为顶点的三角形不相似,如图4,
    ∴E(﹣12,0);
    同理得BE的解析式为:y=﹣x﹣4,
    ﹣x﹣4=x2﹣x﹣4,
    x=或0(舍)
    ∴D(,);
    综上,点D的坐标为(,)或(,).



    【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、相似三角形的性质和判定、一元二次方程、三角形面积以及勾股定理,第3问有难度,确定三角形与△ABE相似并画出图形是关键.
    20. (2017四川眉山)如图,抛物线y=ax2+bx﹣2与x轴交于A、B两点,与y轴交于C点,已知A(3,0),且M(1,﹣)是抛物线上另一点.
    (1)求a、b的值;
    (2)连结AC,设点P是y轴上任一点,若以P、A、C三点为顶点的三角形是等腰三角形,求P点的坐标;
    (3)若点N是x轴正半轴上且在抛物线内的一动点(不与O、A重合),过点N作NH∥AC交抛物线的对称轴于H点.设ON=t,△ONH的面积为S,求S与t之间的函数关系式.

    【考点】HF:二次函数综合题.
    【分析】(1)根据题意列方程组即可得到结论;
    (2)在y=ax2+bx﹣2中,当x=0时.y=﹣2,得到OC=2,如图,设P(0,m),则PC=m+2,OA=3,根据勾股定理得到AC==,①当PA=CA时,则OP1=OC=2,②当PC=CA=时,③当PC=PA时,点P在AC的垂直平分线上,根据相似三角形的性质得到P3(0,),④当PC=CA=时,于是得到结论;
    (3)过H作HG⊥OA于G,设HN交Y轴于M,根据平行线分线段成比例定理得到OM=,求得抛物线的对称轴为直线x==,得到OG=,求得GN=t﹣,根据相似三角形的性质得到HG=t﹣,于是得到结论.
    【解答】解:(1)把A(3,0),且M(1,﹣)代入y=ax2+bx﹣2得,
    解得:;
    (2)在y=ax2+bx﹣2中,当x=0时.y=﹣2,
    ∴C(0,﹣2),
    ∴OC=2,
    如图,设P(0,m),则PC=m+2,OA=3,AC==,
    ①当PA=CA时,则OP1=OC=2,
    ∴P1(0,2);
    ②当PC=CA=时,即m+2=,∴m=﹣2,
    ∴P2(0,﹣2);
    ③当PC=PA时,点P在AC的垂直平分线上,
    则△AOC∽△P3EC,
    ∴=,
    ∴P3C=,
    ∴m=,
    ∴P3(0,),
    ④当PC=CA=时,m=﹣2﹣,
    ∴P4(0,﹣2﹣),
    综上所述,P点的坐标1(0,2)或(0,﹣2)或(0,)或(0,﹣2﹣);
    (3)过H作HG⊥OA于G,设HN交Y轴于M,
    ∵NH∥AC,
    ∴,
    ∴,
    ∴OM=,
    ∵抛物线的对称轴为直线x==,
    ∴OG=,
    ∴GN=t﹣,
    ∵GH∥OC,
    ∴△NGH∽△NOM,
    ∴,
    即=,
    ∴HG=t﹣,
    ∴S=ON•GH=t(t﹣)=t2﹣t(0<t<3).










    相关学案

    备战中考初中数学导练学案50讲—第47讲二次函数与圆及其变换的综合(讲练版): 这是一份备战中考初中数学导练学案50讲—第47讲二次函数与圆及其变换的综合(讲练版),共52页。学案主要包含了疑难点拨,参考答案等内容,欢迎下载使用。

    备战中考初中数学导练学案50讲—第46讲二次函数与四边形的综合(讲练版): 这是一份备战中考初中数学导练学案50讲—第46讲二次函数与四边形的综合(讲练版),共44页。学案主要包含了疑难点拨等内容,欢迎下载使用。

    备战中考初中数学导练学案50讲—第24讲菱形(讲练版): 这是一份备战中考初中数学导练学案50讲—第24讲菱形(讲练版),共33页。学案主要包含了疑难点拨等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        备战中考初中数学导练学案50讲—第45讲二次函数与三角形的综合(讲练版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map