江苏省徐州市部分学校2021--2022学年九年级下学期第一次模拟考试数学试题(word版含答案)
展开
这是一份江苏省徐州市部分学校2021--2022学年九年级下学期第一次模拟考试数学试题(word版含答案),共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2021--2022学年度第二学期一模检测九年级数学试题(全卷共140分 考试时间120分钟) 一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前面的字母代号填涂在答题卡相应位置)1.2的相反数是 A. 2 B.2 C. D 2.下列图形是轴对称图形的是 A B C D3.下列运算中,正确的是 ·‘ A. ·= B. C.+= D.÷=1 4.若代数式在实数范围内有意义,则x的取值范围是 A.X>l B.X≥1 C. x≤1 D.x≠15.“市长杯”足球赛中,七支参赛球队进球数如下(单位:个):3、5、2、2、3、1、3,这组数据的中位数和众数分别是 A.1.5,3 B.2,2 C.3,3 D.2,36.数轴上在和之间的整数有 A.0个 B.1个 C.2个 D.3个7.已知正方形的对称中心在坐标原点,顶点A、B、C、D按逆时针依次排列,若A点的坐标为 (3,5),则点B与点C的坐标分别为 A.(—3,5),(—3,—5) B.(—5,3),(5,—3) C.(—5,3),(3,—5) D.(—5,3),(—3,—5) 九年级数学试题 第1页共6页 8.北京冬奥会跳台滑雪项目比赛其标准台高度是90m.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m)与水平距离x(单位:m)近似满 足函数关系=a+bx+c(a≠0).下图记录了某运动员起跳后 的x与y的三组数据,根据上述函数模型和数据,可推断出该运动 员起跳后飞行到最高点时,水平距离为 A.10m B.15m C.20m D.22.5m(第8题)二、填空题(本大题共有10小题,每小题3分,共30分.不需要写出解答过程,请将答案直接填写在答题卡相应位置) 9.4的平方根是_________· 10.分解因式:—4x+4=________· 11.新型冠状病毒呈球形或椭圆形有包膜,直径大约是80~160纳米,1纳米=米.用科学计数法表示160纳米=__________米. 12.若分式 的值为0,则x的值为__________· 13.已知圆锥的底面半径为2cm,母线长为6cm,则圆锥的侧面积为__________c. 14. 《九章算术》原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?译文:现有一些人共买一个物品,每人出8钱,还盈余3钱;每人出7钱,则还差4钱,问共多少人,物品价格多少钱?设共有x人,物品的价格是y钱,则可列方程组为____________· 15.如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔30海里的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是________海里. 16.如图,AF是正五边形ABCDE的外接圆的切线,则∠CAF=__________°. (第15题) (第16题) (第17题) 九年级数学试题 第2页共6页17.如图,Rt△ABC中,∠ACB=90°,AC=BC=4,点D是AB边上的一个动点,以DC为斜边作Rt△DCE,使∠CDE=30°,点E、A在CD的两侧,当点D从点A运动到点B时,点E的运动路程为___________· 18.已知反比例函数y=的图像过点A(a-l,y),B(a+1,),若>,则a的取值范围为__________·三、解答题(本大题共有10小题,共86分,请在答题卡制定区域内作答,解答时应写出文字 、说明、证明过程或演算步骤) 19. (本题10分)计算: · (1)┃-┃—+2sin60°+ (2) 20. (本题10分) (1)解方程: 一6x一7=0; (2)解不等式组: 21.(本题7分)随着奥密克戎病毒的传播,部分地区采用了在线授课学习方式.某校计划为学生 提供以下四类在线学习方式:在线讲授、观看微课、在线答题和在线讨论.为了解学生需 求,该校随机对本校部分学生进行了“哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图. ( 第21题) 根据图中信息,解答下列问题:(1)本次调查学生共________人,补全条形统计图:(2)扇形统计图中“观看微课”对应的扇形圆心角等于__________°; (3)该校共有学生2600人,请你估计该校对“在线授课”最感兴趣的学生人数.九年级数学试题 第3页共6页 22.(本题8分)如图,在□ABCD中,DE⊥AB,点F在AB的延长线上,且CF⊥AB.求证: (1)△ADE≌ABCF: (2)四边形DEFC是矩形. (第22题) 23.(本题7分)2022年徐州中考体育进行改革,男女考生各有七项可选,每位考生可以任选三项进行测试.某班对学生选项情况进行调查.随机抽取其中一组5名学生的报名情况如下表, 这5名学生分别标记为A,B,C,D,E,其中“√,’表示选报该项. (1)5名学生中选项是1分钟跳绳、立定跳远、掷实心球的概率是__________:(2)每组随机抽取选项是"50米游泳”的两人进行测试,用画树状图的方法求该组中抽到的恰好是A、C的概率. 24.(本题8分)为更好支撑徐州城市功能区发展,提升公共交通服务水平,完善城市综合交通运输体系,国家发展改革委原则同意徐州市城市轨道交通第二期建设规划.为使工程提前 年完成,需将工作效率提高 原计划完成第二期建设需要多少年? 九年级数学试题 第4页共6页 25.(本题8分)如图,已知一次函数y=-2x+8的图像与坐标轴交于A,B两点,并与反比例 函数y=的图像只有一个公共点C. (1)点C的坐标是__________(2)点M为线段BC的中点,将点C和点M向左平移m(m>0)个单位,平移后的对应点都落在反比例函数y= (k≠0)的图像上时,求众的值. (第25题)26.(本题8分)如图,AC与⊙O交于点C,点B在⊙O上,OA=6,AC=4, OB=2, BC∥OA. (1)求证:AC是⊙O的切线. (2)求四边形AOBC的面积. (第26题) 27. (本题10分)已知线段AC. (1)用无刻度的直尺和圆规作Rt△ABC,∠ACB=90°,∠BAC=60°.(不写作法,保留作图痕迹) (2)在(1)的Rt△ABC中,若AC=-2,点D在线段CB上以每秒1个单位的速度从点C出发运动到点B停止,过点D作AC的平行线,交AB于点E.以DE为边向运动的相反方向作等边△DEF,设点D的运动时间为t(秒). ①求当点F在AC上时,t的值: ②在整个运动过程中,是否存在这样的时刻t,使得以C、D、F为顶点的三角形为等腰三角形?若存在,请求出t的值;若不存在,请说明理由. 九年级数学试题 第5页共6页 (第27题) 28.(本题10分)如图,以AB为直径的⊙D与抛物线y=abx+c交于点A、B、C,与y 轴交于点E,点A、C、F的坐标分别是(-3,0)、 (0,-3),过点B作y轴的垂线垂足为F(0,-4). (1)求线段CE的长; (2)求抛物线的函数表达式: (3)抛物线对称轴上是否存在点P,使⊙P与直线AB和x轴都相切?若存在,求出点P的坐标;若不存在,说明理由. (第28题) 九年级数学试题 第6页共6页 2021—2022学年度第二学期一模检测九年级数学(答案及评分标准)一、选择题(每题3分,共24分)题号12345678答案ACABCCDB 二、选择题 (每题3分,共30分)9. ; 10. ; 11. ; 12 .2; 13. 24π;14. ; 15. ; 16.72°; 17. ; 18. 三、解答题 (共86分)19.(1)原式=-1++2·························································4分=2+1. ··························································5分 (2)原式=······························································3分 = - 1··························································5分20.(1)解:··································································2分 x - 7=0或x + 1=0························································3分 x1 =7 ,x2 = -1 ·························································5分(2) 解不等式①得,,······················································2分解不等式①得,························································4分所以不等式组的解集是··················································5分21. (1) 120;条形图高12(图略)···················································2分(2) 72°·······························································4分(3) ···································································6分答:对“在线讲授”最感兴趣的学生人数是780人································7分22. 解:(1)∵四边形ABCD是平行四边形,∴,AD∥BC,·····························1分∴ ,······································································2分∵DE⊥AB, CF⊥AB,∴········································································3分∴△ADE≌△BCF····························································4分(2)∵,∴DE∥CF,·························································5分∵四边形ABCD是平行四边形,∴DC∥AB,··········································6分∴四边形DEFC是平行四边形,···················································7分∵∴四边形DEFC是矩形·······················································8分23. 解:(1);·······························································2分(2)树状图(略);.························································5分共有6种等可能情况,其中是A、C的有2种情况,则抽到恰好是A、C的概率是···················································7分24.解:设原计划完成第二期建设需要x年.············································1分根据题意,得:, ···························································4分解得:x=5································································6分经检验x=5是原方程的解······················································7分答:设原计划完成第二期建设需要5年.············································8分25. 解:点坐标为·······························································2分(2)∵一次函数的图象与坐标轴交于,两点,∴点······································································3分∵点为线段的中点,∴点······································································5分∴点和点平移后的对应点坐标分别为,···········································6分∴, ∴····································································8分26. (1)证明:连接OC∵点C在圆上,OB=2,∴OC=OB=2··············································1分∵OA=6,AC=,∴,∴·······································································3分∴,∴AC是⊙O的切线.······················································4分 (2)过点O作BC的垂线垂足为D∵BC∥OA, ∴∵, ∴△ODC∽△OCA,∴∴,······················································6分∴S=·····································································8分27.(1)作图(略)······························································2分(2)①解:过点F作DE的垂线,垂足为H∵AC=,∴BC=6,∵DC=t,∴BD=6 –t, ·························································1分∵DE∥AC,△DEF是等边三角形,∴,在RT△DFC中,,····························································2分在RT△DBE中,,····························································3分∵2FC=DE,∴,∴t=2 .·······················································4分②当CD=CF时, 过点C作DF的垂线,垂足为M ,在RT△DMC中,∴DM=2DF=2DE,∴,∴t=·····················································6分 当CD=DF时 ,∴·······································································8分当CD=DF时过点F作DC的垂线,垂足为N ,∴在RT△DFN中,∵DF=DE,∴,∴t=3. ··························································10分 28. 解:(1)过点D作OF的垂线,垂足为H∵BF⊥y轴,∴BF∥DH∥AO, ∴,············································1分∵OF=4,∴OH=2,∵OC=3,∴ CH=OC-OH=1∵DH⊥EC,∴CE=2CH=2·····················································2分(2)连接AC、BC∵OA=OC,,∴∵AB是⊙D的直径,∴,∴,∴BF=CF=FO -CO=1,∴点B的坐标是(-1,-4)·····················································4分将A (-3,0)、B (-1,-4)、 C (0,-3)代入得 . ∴ ∴y=x2+2x-3.·····························································6分(3)∵设存在点P,∴BP=m+4,过点P作x轴的垂线,垂足为H,,∵AH=2,BH=4, ∴AB=,∵⊙P与直线AB和x轴都相切,∴,即∴,∴存在P,.····························································10分
相关试卷
这是一份2023-2024学年江苏省徐州市部分学校数学九年级第一学期期末检测试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,矩形不具备的性质是,sin45°的值是,下列图形中是中心对称图形的共有等内容,欢迎下载使用。
这是一份2022年江苏省徐州市丰县中考第二次模拟考试数学试题(word,含答案),文件包含2022年江苏省徐州市丰县第二次模拟考试数学试题docx、答案pdf等2份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。
这是一份2022年湖北省黄石市部分学校九年级5月模拟考试数学试题(word版无答案),共7页。试卷主要包含了单项选择题,填空题,解答题等内容,欢迎下载使用。