2022年北京市顺义区中考数学一模试卷(word版无答案)
展开顺义区2022年初中学业水平考试第一次统一练习
数学试卷
第一部分 选择题
一、选择题(共16分,每题2分)
第1-8题均有四个选项,符合题意的选项只有一个.
1.北京冬奥会期间,共有近1.9万名赛会志愿者和20余万人次城市志愿者参与服务,他们默默奉献并积极传递正能量,共同用实际行动生动地诠释了“奉献、友爱、互助、进步”的志愿精神.将1.9万用科学记数法表示应为( )
A. B. C. D.
2.某个几何体的三视图如图所示,则此几何体是( )
A.直三棱柱 B.长方体 C.圆锥 D.立方体
3.实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是( )
A. B. C. D.
4.下列计算正确的是( )
A. B. C. D.
5.如图,直线,点B在直线a上,,若∠1=40°,则∠2的度数为( )
A.40° B.50° C.80° D.140°
6.下列采用的调查方式中,合适的是( )
A.为了解潮白河的水质情况,采用抽样调查的方式
B.某工厂为了解所生产的产品的合格率,采用普查的方式
C.某小型企业给在职员工做工作服前进行尺寸大小的调查,采用抽样调查的方式
D.为了解神舟飞船设备零件的质量情况,采用抽样调查的方式
7.如图,小明从A点出发,沿直线前进20米后左转30°,再沿直线前进20米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了( )
A.120米 C.200米 B.160米 D.240米
8.如图1,点P从△ABC的顶点B出发,沿匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是( )
A.30 B.60 C.78 D.156
第二部分 非选择题
二、填空题(共16分,每题2分)
9.若在实数范围内有意义,则实数x的取值范围是_______.
10.分解因式.
11.如果,那么代数式的值为_______.
12.已知点,在反比例函数的图象上,且,则m的取值范围是_______.
13.如图,在中,,以点A为圆心,适当长为半径画弧,分别交AB,AC于点D,E,再分别以点D,E为圆心,大于的长为半径画弧,两弧交于点F,作射线AF交边BC于点G,若BG=1,AC=4,则的面积是_______.
14.中共中央办公厅、国务院办公厅印发了《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》(简称“双减”).为全面落实“双减”工作,某校成立了三个义务宣讲团,为学生家长做双减政策解读.现招募宣讲教师,如果张老师和李老师每人随机选报其中的一个宣讲团,则他们恰好选到同一个宣讲团的概率是_______.
15.《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十,粝米三十…”(粟指带壳的谷子,粝米指糙米),其意为:“50单位的粟,可换得30单位的粝米…”.问题:有3斗的粟(1斗=10升),若按照此“粟米之法”,则可以换得的粝米为_______升.
16.如图,矩形ABCD中,AB=2,BC=1,将矩形ABCD绕顶点C顺时针旋转90°,得到矩形EFCG,连接AE,取AE的中点H,连接,则_______.
三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22题5分,第23题6分,第24-25题,每题5分,第26题6分,第27-28题,每题7分)
解答应写出文字说明、演算步骤或证明过程.
17.计算:.
18.解不等式组,并写出它的所有整数解.
19.已知:如图,和射线PN.
求作:射线PM,使得.
作法:①在射线OB上任取一点C,以点C为圆心,OC的长为半径画弧,交OA于点D;
②以点P为圆心,OC的长为半径画圆,交射线PN的反向延长线于点E;
③以点E为圆心,OD的长为半径画弧,在射线PN上方,交OP于点M;
④作射线PM.
所以射线PM就是所求作的射线.
(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);
(2)完成下面的证明.
证明:连接CD,EM.
∵PM=PE=CD=CO,EM=OD,
∴(_________)(填推理依据).
∴.
又∵(________)(填推理依据).
∴.
20.已知关于x的一元二次方程有两个不相等的实数根.
(1)求m的取值范围;
(2)若方程有一个根是0,求方程的另一个根.
21.如图,在四边形ABCD中,,,垂足为O,过点D作BD的垂线交BC的延长线于点E.
(1)求证:四边形ACED是平行四边形;
(2)若AC=4,AD=2,,求BC的长.
22.在平面直角坐标系中,一次函数的图象平行于直线,且经过点.
(1)求这个一次函数的表达式;
(2)当时,对于x的每一个值,一次函数的值大于一次函数的值,直接写出m的取值范围.
23.如图,四边形ABCD内接于,AB为的直径,点D为的中点,对角线AC,BD交于点E,的切线AF交BD的延长线于点F,切点为A.
(1)求证:AE=AF;
(2)若AF=6,BF=10,求BE的长.
24.某公园内的人工湖里有一组小型喷泉,水柱从位于湖面上方的水枪喷出,水柱落于湖面的路径形状是抛物线.现测量出如下数据,在距离水枪水平距离为d米的地点,水柱距离湖面高度为h米.
d(米) | 0 | 0.5 | 2.0 | 3.5 | 5 |
h(米) | 1.67 | 2. 25 | 3.00 | 2. 25 | 0 |
请解决以下问题:
(1)在下面网格中建立适当的平面直角坐标系,根据已知数据描点,并用平滑的曲线连接;
(2)请结合所画图象,水柱最高点距离湖面的高度是______米;
(3)求抛物线的表达式,并写出自变量的取值范围;
(4)现有一游船宽度为2米,顶棚到湖面的高度为2.5米.要求游船从喷泉水柱中间通过时,顶棚不碰到水柱.请问游船是否能符合上述要求通过?并说明理由.
25.为了进一步加强中小学国防教育,教育部研究制定了《国防教育进中小学课程教材指南》.某中学开展了形式多样的国防教育培训活动.为了解培训效果,该校组织七、八年级全体学生参加了国防知识竞赛(百分制),并规定90分及以上为优秀,80-89分为良好,60~79分为及格,59分及以下为不及格.学校随机抽取了七、八年级各20名学生的成绩进行了整理与分析,下面给出了部分信息.
a.抽取七年级20名学生的成绩如下:
65 87 57 96 79 67 89 97 77 100
83 69 89 94 58 97 69 78 81 88
b.抽取七年级20名学生成绩的频数分布直方图如下(数据分成5组:,,,,):
c.抽取八年级20名学生成绩的扇形统计图如下:
d.七年级、八年级各抽取的20名学生成绩的平均数、中位数、方差如下表:
年级 | 平均数 | 中位数 | 方差 |
七年级 | 81 | m | 167.9 |
八年级 | 82 | 81 | 108.3 |
请根据以上信息,回答下列问题:
(1)补全七年级20名学生成绩的频数分布直方图,写出表中m的值;
(2)该校目前七年级有学生300人,八年级有学生200人,估计两个年级此次测试成绩达到优秀的学生各有多少人?
(3)你认为哪个年级的学生成绩较好,并说明理由.
26.在平面直角坐标系中,点在抛物线上.
(1)求该抛物线的对称轴;
(2)已知点,,在抛物线上.若,比较,,的大小,并说明理由.
27.如图,在中,,CD是斜边AB上的中线,EF垂直平分CD,分别交AC,BC于点E,F,连接DE,DF.
(1)求∠EDF的度数;
(2)用等式表示线段AE,BF,EF之间的数量关系,并证明.
28.在平面直角坐标系中,的半径为2.对于直线和线段BC,给出如下定义:若将线段BC沿直线l翻折可以得到的弦(,分别是B,C的对应点),则称线段BC是以直线l为轴的的“关联线段”.例如:在图1中,线段BC的是以直线l为轴的的“关联线段”.
(1)如图2,点,,,,,的横、纵坐标都是整数.在线段,,中,以直线l为轴的的“关联线段”是______;
(2)△ABC是边长为a的等边三角形,点,若BC是以直线l为轴的的“关联线段”,求a的值;
(3)如果经过点的直线上存在以直线l为轴的的“关联线段”,直接写出这条直线与y轴交点的纵坐标m的取值范围.
2024年北京市顺义区中考数学一模试卷-参考答案: 这是一份2024年北京市顺义区中考数学一模试卷-参考答案,文件包含2024年北京市顺义区中考数学一模试卷pdf、2024年北京市顺义区中考数学一模试卷-参考答案pdf等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。
2022年北京市顺义区中考数学一模试卷(附答案): 这是一份2022年北京市顺义区中考数学一模试卷(附答案),共19页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2022年北京市平谷区中考数学一模试卷(word版无答案): 这是一份2022年北京市平谷区中考数学一模试卷(word版无答案),共9页。试卷主要包含了填空题,解答题解答应写出文字说明等内容,欢迎下载使用。