2022年中考数学二轮专题复习《压轴题-二次函数》培优练习05(含答案)
展开2022年中考数学二轮专题复习
《压轴题-二次函数》培优练习05
1.如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).
抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.
(1)求抛物线的函数解析式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,
设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式;
②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.
2.如图,在平面直角坐标系中,平行四边形OABC的顶点A,C的坐标分别为(6,0),(4,3),经过B,C两点的抛物线与x轴的一个交点D的坐标为(1,0).
(1)求该抛物线的解析式;
(2)若∠AOC的平分线交BC于点E,交抛物线的对称轴于点F,点P是x轴上一动点,当PE+PF的值最小时,求点P的坐标;
(3)在(2)的条件下,过点A作OE的垂线交BC于点H,点M,N分别为抛物线及其对称轴上的动点,是否存在这样的点M,N,使得以点M,N,H,E为顶点的四边形为平行四边形?若存在,直接写出点M的坐标,若不存在,说明理由.
3.如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.
(1)求抛物线的函数关系式;
(2)判断△ABM的形状,并说明理由;
(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点.
4.在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.
(1)求抛物线解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MOA的面积为S.
求S关于m的函数关系式,并求出当m为何值时,S有最大值,这个最大值是多少?
(3)若点Q是直线y=﹣x上的动点,过Q做y轴的平行线交抛物线于点P,判断有几个Q能使以点P,Q,B,O为顶点的四边形是平行四边形的点,直接写出相应的点Q的坐标.
5.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+2(a≠0)与x轴交于A(﹣1,0),
B(3,0)两点,与y轴交于点C,连接BC.
(1)求该抛物线的解析式,并写出它的对称轴;
(2)点D为抛物线对称轴上一点,连接CD、BD,若∠DCB=∠CBD,求点D的坐标;
(3)已知F(1,1),若E(x,y)是抛物线上一个动点(其中1<x<2),连接CE、CF、EF,
求△CEF面积的最大值及此时点E的坐标.
(4)若点N为抛物线对称轴上一点,抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.
0.2022年中考数学二轮专题复习《压轴题-二次函数》培优练习05(含答案)答案解析
一 、综合题
1.解:
2.解:
(1)∵平行四边形OABC中,A(6,0),C(4,3)
∴BC=OA=6,BC∥x轴
∴xB=xC+6=10,yB=yC=3,即B(10,3)
设抛物线y=ax2+bx+c经过点B、C、D(1,0)
∴ 解得:
∴抛物线解析式为y=﹣x2+x﹣
(2)如图1,作点E关于x轴的对称点E',连接E'F交x轴于点P
∵C(4,3)∴OC=∵BC∥OA∴∠OEC=∠AOE
∵OE平分∠AOC∴∠AOE=∠COE∴∠OEC=∠COE∴CE=OC=5
∴xE=xC+5=9,即E(9,3)∴直线OE解析式为y=x
∵直线OE交抛物线对称轴于点F,对称轴为直线:x=﹣7∴F(7,)
∵点E与点E'关于x轴对称,点P在x轴上∴E'(9,﹣3),PE=PE'
∴当点F、P、E'在同一直线上时,PE+PF=PE'+PF=FE'最小
设直线E'F解析式为y=kx+h
∴ 解得:∴直线E'F:y=﹣x+21
当﹣x+21=0时,解得:x=
∴当PE+PF的值最小时,点P坐标为(,0).
(3)存在满足条件的点M,N,使得以点M,N,H,E为顶点的四边形为平行四边形.
设AH与OE相交于点G(t,t),如图2
∵AH⊥OE于点G,A(6,0)∴∠AGO=90°∴AG2+OG2=OA2
∴(6﹣t)2+(t)2+t2+(t)2=62∴解得:t1=0(舍去),t2=∴G(,)
设直线AG解析式为y=dx+e
∴ 解得:∴直线AG:y=﹣3x+18
当y=3时,﹣3x+18=3,解得:x=5∴H(5,3)
∴HE=9﹣5=4,点H、E关于直线x=7对称
①当HE为以点M,N,H,E为顶点的平行四边形的边时,如图2
则HE∥MN,MN=HE=4
∵点N在抛物线对称轴:直线x=7上∴xM=7+4或7﹣4,即xM=11或3
当x=3时,yM=﹣×9+×9﹣=∴M(3,)或(11,)
②当HE为以点M,N,H,E为顶点的平行四边形的对角线时,如图3
则HE、MN互相平分
∵直线x=7平分HE,点F在直线x=7上
∴点M在直线x=7上,即M为抛物线顶点
∴yM=﹣×49+×7﹣=4∴M(7,4)
综上所述,点M坐标为(3,)、(11,)或(7,4).
3.解:
(1)∵A点为直线y=x+1与x轴的交点,∴A(﹣1,0),
又B点横坐标为2,代入y=x+1可求得y=3,
∴B(2,3),
∵抛物线顶点在y轴上,
∴可设抛物线解析式为y=ax2+c,
把A、B两点坐标代入可得,解得,
∴抛物线解析式为y=x2﹣1;
(2)△ABM为直角三角形.理由如:
由(1)抛物线解析式为y=x2﹣1可知M点坐标为(0,﹣1),
∴AM=,AB===3,BM==2,
∴AM2+AB2=2+18=20=BM2,∴△ABM为直角三角形;
(3)当抛物线y=x2﹣1平移后顶点坐标为(m,2m)时,
其解析式为y=(x﹣m)2+2m,即y=x2﹣2mx+m2+2m,联立y=x,
可得,消去y整理可得x2﹣(2m+1)x+m2+2m=0,
∵平移后的抛物线总有不动点,
∴方程x2﹣(2m+1)x+m2+2m=0总有实数根,
∴△≥0,即(2m+1)2﹣4(m2+2m)≥0,解得m≤,
即当m≤时,平移后的抛物线总有不动点.
4.解:(1)设抛物线解析式为y=ax2+bx+c,
∵抛物线经过A(﹣4,0),B(0,﹣4),C(2,0),
∴,解得,
∴抛物线解析式为y=x2+x﹣4;
(2)∵点M的横坐标为m,
∴点M的纵坐标为m2+m﹣4,
又∵A(﹣4,0),
∴AO=0﹣(﹣4)=4,
∴S=×4×|m2+m﹣4|=﹣(m2+2m﹣8)=﹣m2﹣2m+8,
∵S=﹣(m2+2m﹣8)=﹣(m+1)2+9,点M为第三象限内抛物线上一动点,
∴当m=﹣1时,S有最大值,最大值为S=9;
故答案为:S关于m的函数关系式为S=﹣m2﹣2m+8,当m=﹣1时,S有最大值9;
(3)∵点Q是直线y=﹣x上的动点,∴设点Q的坐标为(a,﹣a),
∵点P在抛物线上,且PQ∥y轴,
∴点P的坐标为(a, a2+a﹣4),
∴PQ=﹣a﹣(a2+a﹣4)=﹣a2﹣2a+4,
又∵OB=0﹣(﹣4)=4,
以点P,Q,B,O为顶点的四边形是平行四边形,
∴|PQ|=OB,即|﹣a2﹣2a+4|=4,
①﹣a2﹣2a+4=4时,整理得,a2+4a=0,
解得a=0(舍去)或a=﹣4,
﹣a=4,
所以点Q坐标为(﹣4,4),
②﹣a2﹣2a+4=﹣4时,整理得,a2+4a﹣16=0,解得a=﹣2±2,
所以点Q的坐标为(﹣2+2,2﹣2)或(﹣2﹣2,2+2),
综上所述,Q坐标为(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)时,
使点P,Q,B,O为顶点的四边形是平行四边形.
5.解:
(1)将点A(﹣1,0),B(3,0)代入y=ax2+bx+2,
可得a=﹣,b=,∴y=﹣x2+x+2;
∴对称轴x=1;
(2)如图1:过点D作DG⊥y轴于G,作DH⊥x轴于H,
设点D(1,y),
∵C(0,2),B(3,0),∴在Rt△CGD中,CD2=CG2+GD2=(2﹣y)2+1,
∴在Rt△BHD中,BD2=BH2+HD2=4+y2,
在△BCD中,∵∠DCB=∠CBD,∴CD=BD,∴CD2=BD2,
∴(2﹣y)2+1=4+y2,∴y=,
∴D(1,);
(3)如图2:过点E作EQ⊥y轴于点Q,过点F作直线FR⊥y轴于R,过点E作FP⊥FR于P,
∴∠EQR=∠QRP=∠RPE=90°,∴四边形QRPE是矩形,
∵S△CEF=S矩形QRPE﹣S△CRF﹣S△EFP,
∵E(x,y),C(0,2),F(1,1),
∴S△CEF=EQ•QR﹣×EQ•QC﹣CR•RF﹣FP•EP,
∴S△CEF=x(y﹣1)﹣x(y﹣2)﹣×1×1﹣ (x﹣1)(y﹣1),
∵y=﹣x2+x+2,∴S△CEF=﹣x2+x,
∴当x=时,面积有最大值是,此时E(,);
(4)存在点M使得以B,C,M,N为顶点的四边形是平行四边形,设N(1,n),M(x,y),
①四边形CMNB是平行四边形时,=,∴x=﹣2,∴M(﹣2,﹣);
②四边形CNBM时平行四边形时,=,∴x=2,∴M(2,2);
③四边形CNNB时平行四边形时,=,∴x=4,∴M(4,﹣);
综上所述:M(2,2)或M(4,﹣)或M(﹣2,﹣);
中考数学二轮专题复习 二次函数 压轴题专项培优练习(教师版): 这是一份中考数学二轮专题复习 二次函数 压轴题专项培优练习(教师版),共62页。试卷主要包含了已知等内容,欢迎下载使用。
2022年中考数学二轮专题复习《压轴题-二次函数》培优练习10(含答案): 这是一份2022年中考数学二轮专题复习《压轴题-二次函数》培优练习10(含答案),共9页。
2022年中考数学二轮专题复习《压轴题-二次函数》培优练习09(含答案): 这是一份2022年中考数学二轮专题复习《压轴题-二次函数》培优练习09(含答案),共9页。试卷主要包含了5时“美点”的个数.,5,∴A,5,0)等内容,欢迎下载使用。