2022年浙江省温州市中考数学备考模拟试题(word版含答案)
展开2022年浙江省温州市中考数学备考模拟试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.计算的结果是( )
A. B. C.1 D.6
2.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:
班级 | 参加人数 | 平均数 | 中位数 | 方差 |
甲 | 55 | 135 | 149 | 191 |
乙 | 55 | 135 | 151 | 110 |
某同学分析上表后得出如下结论:
①甲、乙两班学生的平均成绩相同;
②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);
③甲班成绩的波动比乙班大.
上述结论中,正确的是( )A.①② B.②③ C.①③ D.①②③
3.已知两个不等于0的实数、满足,则等于( )
A. B. C.1 D.2
4.下列运算正确的是( )
A. B. C. D.
5.下列四个命题:①两直线平行,内错角相等;②对顶角相等;③等腰三角形的两个底角相等;④菱形的对角线互相垂直,其中逆命题是真命题的是( )
A.①②③④ B.①③④ C.①③ D.①
6.红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有( )
A.3种 B.4种 C.5种 D.6种
7.已知抛物线y=x2+2x+k+1与x轴有两个不同的交点,则一次函数y=kx﹣k与反比例函数y=在同一坐标系内的大致图象是( )
A. B. C. D.
8.如图,一束光线先后经平面镜,反射后,反射光线与平行,当时,的度数为( )
A. B. C. D.
9.如图,在矩形ABCD中,AB=3,BC=4,动点P沿折线BCD从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是( )
A. B.
C. D.
10.若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程=1有整数解,则满足条件的所有a的值之和是( )
A.﹣10 B.﹣12 C.﹣16 D.﹣18
二、填空题
11.计算:=________
12.如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D.若OB=3,OD=2,则阴影部分的面积之和为______.
13.如图,AB是⊙O的切线,点B为切点,若∠A=30°,则∠AOB=_________.
14.一副三角板如图所示摆放,且,则的度数为__________.
15.图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE与地面平行,支撑杆AD,BC可绕连接点O转动,且,椅面底部有一根可以绕点H转动的连杆HD,点H是CD的中点,FA,EB均与地面垂直,测得FA=54cm,EB=45cm,AB=48cm.
(1)椅面CE的长度为_________cm.
(2)如图3,椅子折叠时,连杆HD绕着支点H带动支撑杆AD,BC转动合拢,椅面和连杆夹角∠CHD的度数达到最小值30°时,A,B两点间的距离为________cm(结果精确到0.1cm).
16.如图,正方形的对角线相交于点,点在边上,点在的延长线上,,交于点,,,则______.
三、解答题
17.(1)计算
(2)先化简,再求值:,其中,
18.如图,正方形ABCD中,点E、F分别在AD,CD上,且AE=DF,连接BE,AF.求证:BE=AF.
19.网络技术的发展对学生学习方式产生巨大的影响,某校为了解学生每周课余利用网络资源进行自主学习的时间,在本校随机抽取若干名学生进行问卷调查,现将调查结果绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题
组别 | 学习时间x(h) | 频数(人数) |
A | 0<x≤1 | 8 |
B | 1<x≤2 | 24 |
C | 2<x≤3 | 32 |
D | 3<x≤4 | n |
E | 4小时以上 | 4 |
(1)表中的n=______,中位数落在______组,扇形统计图中B组对应的圆心角为______°;
(2)请补全频数分布直方图;
(3)该校准备召开利用网络资源进行自主学习的交流会,计划在E组学生中随机选出两人进行经验介绍,已知E组的四名学生中,七、八年级各有1人,九年级有2人,请用画树状图法或列表法求抽取的两名学生都来自九年级的概率.
20.2020年12月30日,中共湘潭市委创造性地提出了深化“六个湘潭”(实力湘潭、创新湘潭、文化湘潭、幸福湘潭、美丽湘潭、平安湘潭)建设的发展目标.为响应政府号召,湘潭县湘莲种植户借助电商平台,在线下批发的基础上同步在电商平台“拼多多”上零售湘莲.已知线上零售、线下批发湘莲共获得4000元;线上零售和线下批发湘莲销售额相同.
(1)求线上零售和线下批发湘莲的单价分别为每千克多少元?
(2)该产地某种植大户某月线上零售和线下批发共销售湘莲,设线上零售,获得的总销售额为y元;
①请写出y与x的函数关系式;
②若总销售额不低于70000元,则线上零售量至少应达到多少千克?
21.如图,直线与双曲线相交于点A,且,将直线向左平移一个单位后与双曲线相交于点B,与x轴、y轴分别交于C、D两点.
(1)求直线的解析式及k的值;
(2)连结、,求的面积.
22.如图,AB是⊙O的直径,点D是AB延长线上的一点,点C在⊙O上,且AC=CD,∠ACD=120°.
(1)求证:CD是⊙O的切线,
(2)若⊙O的半径为3,求图中阴影部分的面积.
23.在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.
(1)如图1,若∠DAB=120°,且∠B=90°,试探究边AD、AB与对角线AC的数量关系并说明理由.
(2)如图2,若将(1)中的条件“∠B=90°”去掉,(1)中的结论是否成立?请说明理由.
(3)如图3,若∠DAB=90°,探究边AD、AB与对角线AC的数量关系并说明理由.
24.已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.
(1)求抛物线顶点Q的坐标(用含a的代数式表示);
(2)说明直线与抛物线有两个交点;
(3)直线与抛物线的另一个交点记为N.
(Ⅰ)若-1≤a≤,求线段MN长度的取值范围;
(Ⅱ)求△QMN面积的最小值.
参考答案:
1.A
2.D
3.A
4.C
5.C
6.C
7.D
8.B
9.D
10.B
11.
12.6.
13.60°
14.
15. 40 12.5
16.
17.(1)-11,(2)4a2-4ab+2b2,.
18.见解析.
19.(1)12,C,108
(2)见解析
(3)
20.(1)线上零售湘莲的单价为每千克40元,线下批发湘莲的单价为每千克30元; (2)①y=10x+60000; ②线上零售量至少应达到1000千克.
21.(1)直线的解析式为,k=1;(2).
22.(1)见解析
(2)
23.(1)AC=AD+AB;(2)成立;(3)AD+AB=AC.
24.(1)抛物线的顶点Q的坐标是(-,);(2)证明见解析;(3)(Ⅰ);
(Ⅱ) .
2022年浙江省温州市龙港市中考数学模拟试卷(word版含答案): 这是一份2022年浙江省温州市龙港市中考数学模拟试卷(word版含答案),共8页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2022年浙江省温州市中考备考模拟数学试题(2)(word版含答案): 这是一份2022年浙江省温州市中考备考模拟数学试题(2)(word版含答案),共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2022年浙江省温州市中考数学备考模拟试卷(4)(word版无答案): 这是一份2022年浙江省温州市中考数学备考模拟试卷(4)(word版无答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。