所属成套资源:2022年中考数学二轮复习之重难热点提分专题
专题十七 二次函数与平行四边形存在问题-2022年中考数学二轮复习之重难热点提分专题
展开
这是一份专题十七 二次函数与平行四边形存在问题-2022年中考数学二轮复习之重难热点提分专题,文件包含专题十七二次函数与平行四边形存在问题-2022年中考数学二轮复习之重难热点提分专题解析版docx、专题十七二次函数与平行四边形存在问题-2022年中考数学二轮复习之重难热点提分专题原卷版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
专题十七 二次函数与平行四边形存在问题
1.(2021•青海)如图1(注:与图2完全相同)所示,抛物线y=-12x2+bx+c经过B、D两点,与x轴的另一个交点为A,与y轴相交于点C.
(1)求抛物线的解析式.
(2)设抛物线的顶点为M,求四边形ABMC的面积.(请在图1中探索)
(3)设点Q在y轴上,点P在抛物线上.要使以点A、B、P、Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)
【分析】(1)用待定系数法解答便可;
(2)求出抛物线与坐标轴的交点A、D坐标及抛物线顶点M的坐标,再将四边形ABMC的面积分为三角形的面积的和,进行计算便可;
(3)分两种情况:AB为平行四边形的边;AB为平行四边形的对角线.分别解答便可.
【解析】(1)把B(3,0)和D(﹣2,-52)代入抛物线的解析式得,
-92+3b+c=0-2-2b+c=-52,
解得,b=1c=32,
∴抛物线的解析式为:y=-12x2+x+32;
(2)令x=0,得y=-12x2+x+32=32,
∴C(0,32),
令y=0,得y=-12x2+x+32=0,
解得,x=﹣1,或x=3,
∴A(﹣1,0),
∵y=-12x2+x+32=-12(x-1)2+2,
∴M(1,2),
∴S四边形ABMC=S△AOC+S△COM+S△MOM
=12OA⋅OC+12OC⋅xM+12OB⋅yM
=12×1×32+12×32×1+12×3×2=92;
(3)设Q(0,n),
①当AB为平行四边形的边时,有AB∥PQ,AB=PQ,
a).Q点在P点左边时,则Q(﹣4,n),
把Q(﹣4,n)代入y=-12x2+x+32,得
n=-212,
∴P(﹣4,-212);
②Q点在P点右边时,则Q(4,n),
把Q(4,n)代入y=-12x2+x+32,得
n=-52,
∴P(4,-52);
③当AB为平行四边形的对角线时,如图2,AB与PQ交于点E,
则E(1,0),
∵PE=QE,
∴P(2,﹣n),
把P(2,﹣n)代入y=-12x2+x+32,得
﹣n=32,
∴n=-32,
∴P(2,32).
综上,满足条件的P点坐标为:(﹣4,-212)或(4,-52)或(2,32).
2.(2021•齐齐哈尔)综合与探究
在平面直角坐标系中,抛物线y=12x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6),如图①.
(1)求抛物线的解析式;
(2)直线AB的函数解析式为 ,点M的坐标为 ,cos∠ABO= ;
连接OC,若过点O的直线交线段AC于点P,将△AOC的面积分成1:2的两部分,则点P的坐标为 ;
(3)在y轴上找一点Q,使得△AMQ的周长最小.具体作法如图②,作点A关于y轴的对称点A',连接MA'交y轴于点Q,连接AM、AQ,此时△AMQ的周长最小.请求出点Q的坐标;
(4)在坐标平面内是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
【分析】(1)将点A、C的坐标代入抛物线表达式即可求解;
(2)点A(﹣4,0),OB=OA=4,故点B(0,4),即可求出AB的表达式;OP将△AOC的面积分成1:2的两部分,则AP=13AC或23AC,即可求解;
(3)△AMQ的周长=AM+AQ+MQ=AM+A′M最小,即可求解;
(4)分AC是边、AC是对角线两种情况,分别求解即可.
【解析】(1)将点A、C的坐标代入抛物线表达式得:12×16-4b+c=012×4+2b+c=6,解得b=2c=0,
故直线AB的表达式为:y=12x2+2x;
(2)点A(﹣4,0),OB=OA=4,故点B(0,4),
由点A、B的坐标得,直线AB的表达式为:y=x+4;
则∠ABO=45°,故cos∠ABO=22;
对于y=12x2+2x,函数的对称轴为x=﹣2,故点M(﹣2,﹣2);
OP将△AOC的面积分成1:2的两部分,则AP=13AC或23AC,
则yPyC=13或23,即yP6=13或23,解得:yP=2或4,
故点P(﹣2,2)或(0,4);
故答案为:y=x+4;(﹣2,﹣2);22;(﹣2,2)或(0,4);
(3)△AMQ的周长=AM+AQ+MQ=AM+A′M最小,
点A′(4,0),
设直线A′M的表达式为:y=kx+b,则4k+b=0-2k+b=-2,解得k=13b=-43,
故直线A′M的表达式为:y=13x-43,
令x=0,则y=-43,故点Q(0,-43);
(4)存在,理由:
设点N(m,n),而点A、C、O的坐标分别为(﹣4,0)、(2,6)、(0,0),
①当AC是边时,
点A向右平移6个单位向上平移6个单位得到点C,同样点O(N)右平移6个单位向上平移6个单位得到点N(O),
即0±6=m,0±6=n,解得:m=n=±6,
故点N(6,6)或(﹣6,﹣6);
②当AC是对角线时,
由中点公式得:﹣4+2=m+0,6+0=n+0,
解得:m=﹣2,n=6,
故点N(﹣2,6);
综上,点N的坐标为(6,6)或(﹣6,﹣6)或(﹣2,6).
3.(2021•重庆)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(-2,0),直线BC的解析式为y=-23x+2.
(1)求抛物线的解析式;
(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;
(3)将抛物线y=ax2+bx+2(a≠0)向左平移2个单位,已知点M为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.
【分析】(1)利用直线BC的解析式求出点B、C的坐标,则y=ax2+bx+2=a(x+2)(x﹣32)=ax2﹣22a﹣6a,即﹣6a=2,解得:a=13,即可求解;
(2)四边形BECD的面积S=S△BCE+S△BCD=12×EF×OB+12×(xD﹣xC)×BH,即可求解;
(3)分AE是平行四边形的边、AE是平行四边形的对角线两种情况,分别求解即可.
【解析】(1)直线BC的解析式为y=-23x+2,令y=0,则x=32,令x=0,则y=2,
故点B、C的坐标分别为(32,0)、(0,2);
则y=ax2+bx+2=a(x+2)(x﹣32)=a(x2﹣22x﹣6)=ax2﹣22a﹣6a,
即﹣6a=2,解得:a=13,
故抛物线的表达式为:y=-13x2+223x+2①;
(2)如图,过点B、E分别作y轴的平行线分别交CD于点H,交BC于点F,
∵AD∥BC,则设直线AD的表达式为:y=-23(x+2)②,
联立①②并解得:x=42,故点D(42,-103),
由点C、D的坐标得,直线CD的表达式为:y=-223x+2,
当x=32时,yBC=-23x+2=﹣2,即点H(32,﹣2),故BH=2,
设点E(x,-13x2+223x+2),则点F(x,-23x+2),
则四边形BECD的面积S=S△BCE+S△BCD=12×EF×OB+12×(xD﹣xC)×BH=12×(-13x2+223x+2+23x﹣2)×32+12×42×2=-22x2+3x+42,
∵-22<0,故S有最大值,当x=322时,S的最大值为2524,此时点E(322,52);
(3)存在,理由:
y=-13x2+223x+2=-13(x-2)2+83,抛物线y=ax2+bx+2(a≠0)向左平移2个单位,
则新抛物线的表达式为:y=-13x2+83,
点A、E的坐标分别为(-2,0)、(322,52);设点M(2,m),点N(n,s),s=-13n2+83;
①当AE是平行四边形的边时,
点A向右平移522个单位向上平移52个单位得到E,同样点M(N)向右平移522个单位向上平移52个单位得到N(M),
即2±522=n,
则s=-13n2+83=-112或56,
故点N的坐标为(722,-112)或(-322,76);
②当AE是平行四边形的对角线时,
由中点公式得:-2+322=n+2,解得:n=-22,
s=-13n2+83=156,
故点N的坐标(-22,52);
综上点N的坐标为:(722,-112)或(-322,76)或(-22,52).
4.(2021•湖州)如图,已知在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C.过点C的直线CA与抛物线交于另一点A(点A在对称轴左侧),点B在AC的延长线上,连结OA,OB,DA和DB.
(1)如图1,当AC∥x轴时,
①已知点A的坐标是(﹣2,1),求抛物线的解析式;
②若四边形AOBD是平行四边形,求证:b2=4c.
(2)如图2,若b=﹣2,BCAC=35,是否存在这样的点A,使四边形AOBD是平行四边形?若存在,求出点A的坐标;若不存在,请说明理由.
【分析】(1)①先确定出点C的坐标,再用待定系数法即可得出结论;
②先确定出抛物线的顶点坐标,进而得出DF=b24,再判断出△AFD≌△BCO,得出DF=OC,即可得出结论;
(2)先判断出抛物线的顶点坐标D(﹣1,c+1),设点A(m,﹣m2﹣2m+c)(m<0),
判断出△AFD≌△BCO(AAS),得出AF=BC,DF=OC,再判断出△ANF∽△AMC,得出ANAM=FNCM=AFAC=BCAC=35,进而求出m的值,得出点A的纵坐标为c-54<c,进而判断出点M的坐标为(0,c-54),N(﹣1,c-54),进而得出CM=54,
DN=94,FN=94-c,进而求出c=32,即可得出结论.
【解析】(1)①∵AC∥x轴,点A(﹣2,1),
∴C(0,1),
将点A(﹣2,1),C(0,1)代入抛物线解析式中,得-4-2b+c=1c=1,
∴b=-2c=1,
∴抛物线的解析式为y=﹣x2﹣2x+1;
②如图1,过点D作DE⊥x轴于E,交AB于点F,
∵AC∥x轴,
∴EF=OC=c,
∵点D是抛物线的顶点坐标,
∴D(b2,c+b24),
∴DF=DE﹣EF=c+b24-c=b24,
∵四边形AOBD是平行四边形,
∴AD=BO,AD∥OB,
∴∠DAF=∠OBC,
∵∠AFD=∠BCO=90°,
∴△AFD≌△BCO(AAS),
∴DF=OC,
∴b24=c,
即b2=4c;
(2)如图2,∵b=﹣2.
∴抛物线的解析式为y=﹣x2﹣2x+c,
∴顶点坐标D(﹣1,c+1),
假设存在这样的点A使四边形AOBD是平行四边形,
设点A(m,﹣m2﹣2m+c)(m<0),
过点D作DE⊥x轴于点E,交AB于F,
∴∠AFD=∠EFC=∠BCO,
∵四边形AOBD是平行四边形,
∴AD=BO,AD∥OB,
∴∠DAF=∠OBC,
∴△AFD≌△BCO(AAS),
∴AF=BC,DF=OC,
过点A作AM⊥y轴于M,交DE于N,
∴DE∥CO,
∴△ANF∽△AMC,
∴ANAM=FNCM=AFAC=BCAC=35,
∵AM=﹣m,AN=AM﹣NM=﹣m﹣1,
∴-m-1-m=35,
∴m=-52,
∴点A的纵坐标为﹣(-52)2﹣2×(-52)+c=c-54<c,
∵AM∥x轴,
∴点M的坐标为(0,c-54),N(﹣1,c-54),
∴CM=c﹣(c-54)=54,
∵点D的坐标为(﹣1,c+1),
∴DN=(c+1)﹣(c-54)=94,
∵DF=OC=c,
∴FN=DN﹣DF=94-c,
∵FNCM=35,
∴94-c54=35,
∴c=32,
∴c-54=14,
∴点A纵坐标为14,
∴A(-52,14),
∴存在这样的点A,使四边形AOBD是平行四边形.
5.(2021•黔东南州)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).
(1)求抛物线的解析式.
(2)在y轴上找一点E,使得△EAC为等腰三角形,请直接写出点E的坐标.
(3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q坐标;若不存在,请说明理由.
【分析】(1)根据抛物线的顶点坐标设出抛物线的解析式,再将点C坐标代入求解,即可得出结论;
(2)先求出点A,C坐标,设出点E坐标,表示出AE,CE,AC,再分三种情况建立方程求解即可;
(3)利用平移先确定出点Q的纵坐标,代入抛物线解析式求出点Q的横坐标,即可得出结论.
【解析】(1)∵抛物线的顶点为(1,﹣4),
∴设抛物线的解析式为y=a(x﹣1)2﹣4,
将点C(0,﹣3)代入抛物线y=a(x﹣1)2﹣4中,得a﹣4=﹣3,
∴a=1,
∴抛物线的解析式为y=a(x﹣1)2﹣4=x2﹣2x﹣3;
(2)由(1)知,抛物线的解析式为y=x2﹣2x﹣3,
令y=0,则x2﹣2x﹣3=0,
∴x=﹣1或x=3,
∴B(3,0),A(﹣1,0),
令x=0,则y=﹣3,
∴C(0,﹣3),
∴AC=10,
设点E(0,m),则AE=m2+1,CE=|m+3|,
∵△ACE是等腰三角形,
∴①当AC=AE时,10=m2+1,
∴m=3或m=﹣3(点C的纵坐标,舍去),
∴E(0,3),
②当AC=CE时,10=|m+3|,
∴m=﹣3±10,
∴E(0,﹣3+10)或(0,﹣3-10),
③当AE=CE时,m2+1=|m+3|,
∴m=-43,
∴E(0,-43),
即满足条件的点E的坐标为(0,3)、(0,﹣3+10)、(0,﹣3-10)、(0,-43);
(3)如图,存在,∵D(1,﹣4),
∴将线段BD向上平移4个单位,再向右(或向左)平移适当的距离,使点B的对应点落在抛物线上,这样便存在点Q,此时点D的对应点就是点P,
∴点Q的纵坐标为4,
设Q(t,4),
将点Q的坐标代入抛物线y=x2﹣2x﹣3中得,t2﹣2t﹣3=4,
∴t=1+22或t=1﹣22,
∴Q(1+22,4)或(1﹣22,4),
分别过点D,Q作x轴的垂线,垂足分别为F,G,
∵抛物线y=x2﹣2x﹣3与x轴的右边的交点B的坐标为(3,0),且D(1,﹣4),
∴FB=PG=3﹣1=2,
∴点P的横坐标为(1+22)﹣2=﹣1+22或(1﹣22)﹣2=﹣1﹣22,
即P(﹣1+22,0)、Q(1+22,4)或P(﹣1﹣22,0)、Q(1﹣22,4).
6.(2021•遂宁)如图,抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.
(1)求抛物线的解析式.
(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BE交AD于点E,若直线BE将△ABD的面积分为1:2两部分,求点E的坐标.
(3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
【分析】(1)设抛物线解析式为:y=a(x﹣1)(x﹣3),把点C坐标代入解析式,可求解;
(2)先求出点M,点N坐标,利用待定系数法可求AD解析式,联立方程组可求点D坐标,可求S△ABD=12×2×6=6,设点E(m,2m﹣2),分两种情况讨论,利用三角形面积公式可求解;
(3)分两种情况讨论,利用平行四边形的性质可求解.
【解析】(1)∵抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),
∴设抛物线解析式为:y=a(x﹣1)(x﹣3),
∵抛物线y=a(x﹣1)(x﹣3)(a≠0)的图象经过点C(0,6),
∴6=a(0﹣1)(0﹣3),
∴a=2,
∴抛物线解析式为:y=2(x﹣1)(x﹣3)=2x2﹣8x+6;
(2)∵y=2x2﹣8x+6=2(x﹣2)2﹣2,
∴顶点M的坐标为(2,﹣2),
∵抛物线的顶点M与对称轴l上的点N关于x轴对称,
∴点N(2,2),
设直线AN解析式为:y=kx+b,
由题意可得:0=k+b2=2k+b,
解得:k=2b=-2,
∴直线AN解析式为:y=2x﹣2,
联立方程组得:y=2x-2y=2x2-8x+6,
解得:x1=1y1=0,x2=4y2=6,
∴点D(4,6),
∴S△ABD=12×2×6=6,
设点E(m,2m﹣2),
∵直线BE将△ABD的面积分为1:2两部分,
∴S△ABE=13S△ABD=2或S△ABE=23S△ABD=4,
∴12×2×(2m﹣2)=2或12×2×(2m﹣2)=4,
∴m=2或3,
∴点E(2,2)或(3,4);
(3)若AD为平行四边形的边,
∵以A、D、P、Q为顶点的四边形为平行四边形,
∴AD=PQ,
∴xD﹣xA=xP﹣xQ或xD﹣xA=xQ﹣xP,
∴xP=4﹣1+2=5或xP=2﹣4+1=﹣1,
∴点P坐标为(5,16)或(﹣1,16);
若AD为平行四边形的对角线,
∵以A、D、P、Q为顶点的四边形为平行四边形,
∴AD与PQ互相平分,
∴xA+xD2=xP+xQ2,
∴xP=3,
∴点P坐标为(3,0),
综上所述:当点P坐标为(5,16)或(﹣1,16)或(3,0)时,使A、D、P、Q为顶点的四边形为平行四边形.
7.(2021•常德)如图,已知抛物线y=ax2过点A(﹣3,94).
(1)求抛物线的解析式;
(2)已知直线l过点A,M(32,0)且与抛物线交于另一点B,与y轴交于点C,求证:MC2=MA•MB;
(3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D的四边形是平行四边形,求所有符合条件的P点坐标.
【分析】(1)利用待定系数法即可解决问题.
(2)构建方程组确定点B的坐标,再利用平行线分线段成比例定理解决问题即可.
(3)如图2中,设P(t,14t2),根据PD=CD构建方程求出t即可解决问题.
【解析】(1)把点A(﹣3,94)代入y=ax2,
得到94=9a,
∴a=14,
∴抛物线的解析式为y=14x2.
(2)设直线l的解析式为y=kx+b,则有94=-3k+b0=32k+b,
解得k=-12b=34,
∴直线l的解析式为y=-12x+34,
令x=0,得到y=34,
∴C(0,34),
由y=14x2y=-12x+34,解得x=1y=14或x=-3y=94,
∴B(1,14),
如图1中,过点A作AA1⊥x轴于A1,过B作BB1⊥x轴于B1,则BB1∥OC∥AA1,
∴BMMC=MB1MO=32-132=13,MCMA=MOMA1=3232-(-3)=13,
∴BMMC=MCMA,
即MC2=MA•MB.
(3)如图2中,设P(t,14t2)
∵OC为一边且顶点为O,C,P,D的四边形是平行四边形,
∴PD∥OC,PD=OC,
∴D(t,-12t+34),
∴|14t2﹣(-12t+34)|=34,
整理得:t2+2t﹣6=0或t2+2t=0,
解得t=﹣1-7或﹣1+7或﹣2或0(舍弃),
∴P(﹣1-7,2+72)或(﹣1+7,2-72)或(﹣2,1).
8.(2021•重庆)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与直线AB相交于A,B两点,其中A(﹣3,﹣4),B(0,﹣1).
(1)求该抛物线的函数表达式;
(2)点P为直线AB下方抛物线上的任意一点,连接PA,PB,求△PAB面积的最大值;
(3)将该抛物线向右平移2个单位长度得到抛物线y=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点C,点D为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E,使以点B,C,D,E为顶点的四边形为菱形,若存在,请直接写出点E的坐标;若不存在,请说明理由.
【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;
(2)△PAB面积S=12×PH×(xB﹣xA)=12(x﹣1﹣x2﹣4x+1)×(0+3)=-32x2-92x,即可求解;
(3)分BC为菱形的边、菱形的的对角线两种情况,分别求解即可.
【解析】(1)将点A、B的坐标代入抛物线表达式得-4=9-3b+cc=-1,解得b=4c=-1,
故抛物线的表达式为:y=x2+4x﹣1;
(2)设直线AB的表达式为:y=kx+t,则-4=-3k+tt=-1,解得k=1t=-1,
故直线AB的表达式为:y=x﹣1,
过点P作y轴的平行线交AB于点H,
设点P(x,x2+4x﹣1),则H(x,x﹣1),
△PAB面积S=12×PH×(xB﹣xA)=12(x﹣1﹣x2﹣4x+1)×(0+3)=-32x2-92x,
∵-32<0,故S有最大值,当x=-32时,S的最大值为278;
(3)抛物线的表达式为:y=x2+4x﹣1=(x+2)2﹣5,
则平移后的抛物线表达式为:y=x2﹣5,
联立上述两式并解得:x=-1y=-4,故点C(﹣1,﹣4);
设点D(﹣2,m)、点E(s,t),而点B、C的坐标分别为(0,﹣1)、(﹣1,﹣4);
①当BC为菱形的边时,
点C向右平移1个单位向上平移3个单位得到B,同样D(E)向右平移1个单位向上平移3个单位得到E(D),
即﹣2+1=s且m+3=t①或﹣2﹣1=s且m﹣3=t②,
当点D在E的下方时,则BE=BC,即s2+(t+1)2=12+32③,
当点D在E的上方时,则BD=BC,即22+(m+1)2=12+32④,
联立①③并解得:s=﹣1,t=2或﹣4(舍去﹣4),故点E(﹣1,3);
联立②④并解得:s=1,t=﹣4±6,故点E(1,﹣4+6)或(1,﹣4-6);
②当BC为菱形的的对角线时,
则由中点公式得:﹣1=s﹣2且﹣4﹣1=m+t⑤,
此时,BD=BE,即22+(m+1)2=s2+(t+1)2⑥,
联立⑤⑥并解得:s=1,t=﹣3,
故点E(1,﹣3),
综上,点E的坐标为:(﹣1,2)或(﹣3,﹣4+6)或(﹣3,﹣4-6)或(1,﹣3).
9.(2021•牡丹江)如图,已知直线AB与x轴交于点A,与y轴交于点B,线段OA的长是方程x2﹣7x﹣18=0的一个根,OB=12OA.请解答下列问题:
(1)求点A,B的坐标;
(2)直线EF交x轴负半轴于点E,交y轴正半轴于点F,交直线AB于点C.若C是EF的中点,OE=6,反比例函数y=kx图象的一支经过点C,求k的值;
(3)在(2)的条件下,过点C作CD⊥OE,垂足为D,点M在直线AB上,点N在直线CD上.坐标平面内是否存在点P,使以D,M,N,P为顶点的四边形是正方形?若存在,请写出点P的个数,并直接写出其中两个点P的坐标;若不存在,请说明理由.
【分析】(1)解一元二次方程,得到点A的坐标,再根据OB=12OA可得点B坐标;
(2)利用待定系数法求出直线AB的表达式,根据点C是EF的中点,得到点C横坐标,代入可得点C坐标,根据点C在反比例函数图象上求出k值;
(3)画出图形,可得点P共有5个位置,分别求解即可.
【解析】(1)∵线段 的长是方程 的一个根,
解得:x=9或﹣2(舍),而点A在x轴正半轴,
∴A(9,0),
∵OB=12OA,
∴B(0,92),
(2)∵OE=6,
∴E(﹣6,0),
设直线AB的表达式为y=kx+b,将点A和B的坐标代入,
得:0=9k+b92=b,解得:k=-12b=92,
∴AB的表达式为:y=-12x+92,
∵点C是EF的中点,
∴点C的横坐标为﹣3,代入AB中,y=6,
则C(﹣3,6),
∵反比例函数y=kx经过点C,
则k=﹣3×6=﹣18;
(3)存在点P,使以D,M,N,P为顶点的四边形是正方形,
如图,共有5种情况,
在四边形DM1P1N1中,
M1和点A重合,
∴M1(9,0),
此时P1(9,12);
在四边形DP3BN3中,点B和M重合,
可知M在直线y=x+3上,
联立:y=x+3y=-12x+92,
解得:x=1y=4,
∴M(1,4),
∴P3(1,0),
同理可得:P2(9,﹣12),P4(﹣7,4),P5(﹣15,0).
故存在点P使以D,M,N,P为顶点的四边形是正方形,
点P的坐标为P1(9,12),P2(9,﹣12),P3(1,0),P4(﹣7,4),P5(﹣15,0).
相关试卷
这是一份专题四 最佳方案问题-2022年中考数学二轮复习之重难热点提分专题,文件包含专题四最佳方案问题-2022年中考数学二轮复习之重难热点提分专题解析版docx、专题四最佳方案问题-2022年中考数学二轮复习之重难热点提分专题原卷版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
这是一份专题十五 二次函数与面积问题-2022年中考数学二轮复习之重难热点提分专题,文件包含专题十五二次函数与面积问题-2022年中考数学二轮复习之重难热点提分专题解析版docx、专题十五二次函数与面积问题-2022年中考数学二轮复习之重难热点提分专题原卷版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
这是一份专题十四 二次函数与线段问题-2022年中考数学二轮复习之重难热点提分专题,文件包含专题十四二次函数与线段问题-2022年中考数学二轮复习之重难热点提分专题解析版docx、专题十四二次函数与线段问题-2022年中考数学二轮复习之重难热点提分专题原卷版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。