终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    专题十六 二次函数与三角形存在问题-2022年中考数学二轮复习之重难热点提分专题

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题十六 二次函数与三角形存在问题-2022年中考数学二轮复习之重难热点提分专题(原卷版).docx
    • 解析
      专题十六 二次函数与三角形存在问题-2022年中考数学二轮复习之重难热点提分专题(解析版).docx
    专题十六   二次函数与三角形存在问题-2022年中考数学二轮复习之重难热点提分专题(原卷版)第1页
    专题十六   二次函数与三角形存在问题-2022年中考数学二轮复习之重难热点提分专题(原卷版)第2页
    专题十六   二次函数与三角形存在问题-2022年中考数学二轮复习之重难热点提分专题(原卷版)第3页
    专题十六   二次函数与三角形存在问题-2022年中考数学二轮复习之重难热点提分专题(解析版)第1页
    专题十六   二次函数与三角形存在问题-2022年中考数学二轮复习之重难热点提分专题(解析版)第2页
    专题十六   二次函数与三角形存在问题-2022年中考数学二轮复习之重难热点提分专题(解析版)第3页
    还剩3页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题十六 二次函数与三角形存在问题-2022年中考数学二轮复习之重难热点提分专题

    展开

    这是一份专题十六 二次函数与三角形存在问题-2022年中考数学二轮复习之重难热点提分专题,文件包含专题十六二次函数与三角形存在问题-2022年中考数学二轮复习之重难热点提分专题解析版docx、专题十六二次函数与三角形存在问题-2022年中考数学二轮复习之重难热点提分专题原卷版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
    专题十六 二次函数与三角形存在问题

    1.(2021•通辽)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A,B,与y轴交于点C.且直线y=x﹣6过点B,与y轴交于点D,点C与点D关于x轴对称,点P是线段OB上一动点,过点P作x轴的垂线交抛物线于点M,交直线BD于点N.
    (1)求抛物线的函数解析式;
    (2)当△MDB的面积最大时,求点P的坐标;
    (3)在(2)的条件下,在y轴上是否存在点Q,使得以Q,M,N三点为顶点的三角形是直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由.

    【分析】(1)由一次函数图象与坐标轴交点B、D的坐标,再由对称求得C点坐标,再用待定系数法求抛物线的解析式;
    (2)设P(m,0),则M(m,﹣m2+5m+6),N(m,m﹣6),由三角形的面积公式求得△MDB的面积关于m的二次函数,最后根据二次函数的最大值的求法,求得m的值,进而得P点的坐标;
    (3)分三种情况:M为直角顶点;N为直角顶点;Q为直角顶点.分别得出Q点的坐标.
    【解析】(1)令y=0,得y=x﹣6=0,
    解得x=6,
    ∴B(6,0),
    令x=0,得y=x﹣6=﹣6,
    ∴D(0,﹣6),
    ∵点C与点D关于x轴对称,
    ∴C(0,6),
    把B、C点坐标代入y=﹣x2+bx+c中,得
    -36+6b+c=0c=6,
    解得,b=5c=6,
    ∴抛物线的解析式为:y=﹣x2+5x+6;
    (2)设P(m,0),则M(m,﹣m2+5m+6),N(m,m﹣6),
    则MN=﹣m2+4m+12,
    ∴△MDB的面积=12MN⋅OB=-3m2+12m+36═﹣3(m﹣2)2+48,
    ∴当m=2时,△MDB的面积最大,
    此时,P点的坐标为(2,0);

    (3)由(2)知,M(2,12),N(2,﹣4),
    当∠QMN=90°时,QM∥x轴,则Q(0,12);
    当∠MNQ=90°时,NQ∥x轴,则Q(0,﹣4);
    当∠MQN=90°时,设Q(0,n),则QM2+QN2=MN2,
    即4+(12﹣n)2+4+(n+4)2=(12+4)2,
    解得,n=4±55,
    ∴Q(0,4+55)或(0,4-55).
    综上,存在以Q,M,N三点为顶点的三角形是直角三角形.其Q点坐标为(0,12)或(0,﹣4)或(0,4+55)或(0,4-55).
    2.(2021•枣庄)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.
    (1)求抛物线的表达式;
    (2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?
    (3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.

    【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;
    (2)PN=PQsin45°=22(-13m2+43m)=-26(m﹣2)2+223,即可求解;
    (3)分AC=CQ、AC=AQ、CQ=AQ三种情况,分别求解即可.
    【解析】(1)将点A、B的坐标代入抛物线表达式得9a-3b+4=016a+4b+4=0,解得a=-13b=13,
    故抛物线的表达式为:y=-13x2+13x+4;
    (2)由抛物线的表达式知,点C(0,4),
    由点B、C的坐标得,直线BC的表达式为:y=﹣x+4;
    设点M(m,0),则点P(m,-13m2+13m+4),点Q(m,﹣m+4),
    ∴PQ=-13m2+13m+4+m﹣4=-13m2+43m,
    ∵OB=OC,故∠ABC=∠OCB=45°,
    ∴∠PQN=∠BQM=45°,
    ∴PN=PQsin45°=22(-13m2+43m)=-26(m﹣2)2+223,
    ∵-26<0,故当m=2时,PN有最大值为223;

    (3)存在,理由:
    点A、C的坐标分别为(﹣3,0)、(0,4),则AC=5,
    ①当AC=CQ时,过点Q作QE⊥y轴于点E,

    则CQ2=CE2+EQ2,即m2+[4﹣(﹣m+4)]2=25,
    解得:m=±522(舍去负值),
    故点Q(522,8-522);
    ②当AC=AQ时,则AQ=AC=5,
    在Rt△AMQ中,由勾股定理得:[m﹣(﹣3)]2+(﹣m+4)2=25,解得:m=1或0(舍去0),
    故点Q(1,3);
    ③当CQ=AQ时,则2m2=[m=(﹣3)]2+(﹣m+4)2,解得:m=252(舍去);
    综上,点Q的坐标为(1,3)或(522,8-522).
    3.(2021•泸州)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.
    (1)求该抛物线的解析式;
    (2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.
    ①求直线BD的解析式;
    ②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.

    【分析】(1)根据交点式设出抛物线的解析式,再将点C坐标代入抛物线交点式中,即可求出a,即可得出结论;
    (2)①先利用待定系数法求出直线AC的解析式,再利用相似三角形得出比例式求出BF,进而得出点E坐标,最后用待定系数法,即可得出结论;
    ②先确定出点Q的坐标,设点P(x,-12x2+x+4)(1<x<4),得出PG=x﹣1,GQ=-12x2+x+3,再利用三垂线构造出△PQG≌△QRH(AAS),得出RH=GQ=-12x2+x+3,QH=PG=x﹣1,进而得出R(-12x2+x+4,2﹣x),最后代入直线BD的解析式中,即可求出x的值,即可得出结论.
    【解析】(1)∵抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),
    ∴设抛物线的解析式为y=a(x+2)(x﹣4),
    将点C坐标(0,4)代入抛物线的解析式为y=a(x+2)(x﹣4)中,得﹣8a=4,
    ∴a=-12,
    ∴抛物线的解析式为y=-12(x+2)(x﹣4)=-12x2+x+4;

    (2)①如图1,
    设直线AC的解析式为y=kx+b',
    将点A(﹣2,0),C(0,4),代入y=kx+b'中,得-2k+b'=0b'=4,
    ∴k=2b'=4,
    ∴直线AC的解析式为y=2x+4,
    过点E作EF⊥x轴于F,
    ∴OD∥EF,
    ∴△BOD∽△BFE,
    ∴OBBF=BDBE,
    ∵B(4,0),
    ∴OB=4,
    ∵BD=5DE,
    ∴BDBE=BDBD+DE=5DE5DE+BE=56,
    ∴BF=BEBD×OB=65×4=245,
    ∴OF=BF﹣OB=245-4=45,
    将x=-45代入直线AC:y=2x+4中,得y=2×(-45)+4=125,
    ∴E(-45,125),
    设直线BD的解析式为y=mx+n,
    ∴4m+n=0-45m+n=125,
    ∴m=-12n=2,
    ∴直线BD的解析式为y=-12x+2;
    ②∵抛物线与x轴的交点坐标为A(﹣2,0)和B(4,0),
    ∴抛物线的对称轴为直线x=1,
    ∴点Q(1,1),如图2,
    设点P(x,-12x2+x+4)(1<x<4),
    过点P作PG⊥l于G,过点R作RH⊥l于H,
    ∴PG=x﹣1,GQ=-12x2+x+4﹣1=-12x2+x+3,
    ∵PG⊥l,∴∠PGQ=90°,
    ∴∠GPQ+∠PQG=90°,
    ∵△PQR是以点Q为直角顶点的等腰直角三角形,
    ∴PQ=RQ,∠PQR=90°,
    ∴∠PQG+∠RQH=90°,
    ∴∠GPQ=∠HQR,
    ∴△PQG≌△QRH(AAS),
    ∴RH=GQ=-12x2+x+3,QH=PG=x﹣1,
    ∴R(-12x2+x+4,2﹣x),
    由①知,直线BD的解析式为y=-12x+2,
    ∴x=2或x=4(舍),
    当x=2时,y=-12x2+x+4=-12×4+2+4=4,
    ∴P(2,4).


    4.(2021•遵义)如图,抛物线y=ax2+94x+c经过点A(﹣1,0)和点C(0,3)与x轴的另一交点为点B,点M是直线BC上一动点,过点M作MP∥y轴,交抛物线于点P.
    (1)求该抛物线的解析式;
    (2)在抛物线上是否存在一点Q,使得△QCO是等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由;
    (3)以M为圆心,MP为半径作⊙M,当⊙M与坐标轴相切时,求出⊙M的半径.

    【分析】(1)把点A(﹣1,0)和点C (0,3)代入y=ax2+94x+c求出a与c的值即可得出抛物线的解析式;
    (2)①当点Q在y轴右边时,假设△QCO为等边三角形,过点Q作QH⊥OC于H,OC=3,则OH=32,tan60°=QHOH,求出Q(332,32),把x=332代入y=-34x2+94x+3,得y=2738-3316≠32,则假设不成立;
    ②当点Q在y轴的左边时,假设△QCO为等边三角形,过点Q作QT⊥OC于T,OC=3,则OT=32,tan60°=QTOT,求出Q(-332,32),把x=-332代入y=-34x2+94x+3,得y=-2738-3316≠32,则假设不成立;
    (3)求出B(4,0),待定系数法得出BC直线的解析式y=-34x+3,当M在线段BC上,⊙M与x轴相切时,延长PM交AB于点D,则点D为⊙M与x轴的切点,即PM=MD,设P(x,-34x2+94x+3),M(x,-34x+3),则PD=-34x2+94x+3,MD=-34x+3,由PD﹣MD=MD,求出x=1,即可得出结果;当M在线段BC上,⊙M与y轴相切时,延长PM交AB于点D,过点M作ME⊥y轴于E,则点E为⊙M与y轴的切点,即PM=ME,PD﹣MD=EM=x,设P(x,-34x2+94x+3),M(x,-34x+3),则PD=-34x2+94x+3,MD=-34x+3,代入即可得出结果;当M在BC延长线,⊙M与x轴相切时,点P与A重合,M的纵坐标的值即为所求;当M在CB延长线,⊙M与y轴相切时,延长PD交x轴于D,过点M作ME⊥y轴于E,则点E为⊙M与y轴的切点,即PM=ME,PD﹣MD=EM=x,设P(x,-34x2+94x+3),M(x,-34x+3),则PD=34x2-94x﹣3,MD=34x﹣3,代入即可得出结果.
    【解析】(1)把点A(﹣1,0)和点C (0,3)代入y=ax2+94x+c得:0=a-94+c3=c,
    解得:a=-34c=3,
    ∴抛物线的解析式为:y=-34x2+94x+3;
    (2)不存在,理由如下:
    ①当点Q在y轴右边时,如图1所示:
    假设△QCO为等边三角形,
    过点Q作QH⊥OC于H,
    ∵点C (0,3),
    ∴OC=3,
    则OH=12OC=32,tan60°=QHOH,
    ∴QH=OH•tan60°=32×3=332,
    ∴Q(332,32),
    把x=332代入y=-34x2+94x+3,
    得:y=2738-3316≠32,
    ∴假设不成立,
    ∴当点Q在y轴右边时,不存在△QCO为等边三角形;
    ②当点Q在y轴的左边时,如图2所示:
    假设△QCO为等边三角形,
    过点Q作QT⊥OC于T,
    ∵点C (0,3),
    ∴OC=3,
    则OT=12OC=32,tan60°=QTOT,
    ∴QT=OT•tan60°=32×3=332,
    ∴Q(-332,32),
    把x=-332代入y=-34x2+94x+3,
    得:y=-2738-3316≠32,
    ∴假设不成立,
    ∴当点Q在y轴左边时,不存在△QCO为等边三角形;
    综上所述,在抛物线上不存在一点Q,使得△QCO是等边三角形;
    (3)令-34x2+94x+3=0,
    解得:x1=﹣1,x2=4,
    ∴B(4,0),
    设BC直线的解析式为:y=kx+b,
    把B、C的坐标代入则0=4k+b3=b,
    解得:k=-34b=3,
    ∴BC直线的解析式为:y=-34x+3,
    当M在线段BC上,⊙M与x轴相切时,如图3所示:
    延长PM交AB于点D,
    则点D为⊙M与x轴的切点,即PM=MD,
    设P(x,-34x2+94x+3),M(x,-34x+3),
    则PD=-34x2+94x+3,MD=-34x+3,
    ∴(-34x2+94x+3)﹣(-34x+3)=-34x+3,
    解得:x1=1,x2=4(不合题意舍去),
    ∴⊙M的半径为:MD=-34+3=94;
    当M在线段BC上,⊙M与y轴相切时,如图4所示:
    延长PM交AB于点D,过点M作ME⊥y轴于E,
    则点E为⊙M与y轴的切点,即PM=ME,PD﹣MD=EM=x,
    设P(x,-34x2+94x+3),M(x,-34x+3),
    则PD=-34x2+94x+3,MD=-34x+3,
    ∴(-34x2+94x+3)﹣(-34x+3)=x,
    解得:x1=83,x2=0(不合题意舍去),
    ∴⊙M的半径为:EM=83;
    当M在BC延长线,⊙M与x轴相切时,如图5所示:

    点P与A重合,
    ∴M的横坐标为﹣1,
    ∴⊙M的半径为:M的纵坐标的值,
    即:-34×(﹣1)+3=154;
    当M在CB延长线,⊙M与y轴相切时,如图6所示:

    延长PD交x轴于D,过点M作ME⊥y轴于E,
    则点E为⊙M与y轴的切点,即PM=ME,PD﹣MD=EM=x,
    设P(x,-34x2+94x+3),M(x,-34x+3),
    则PD=34x2-94x﹣3,MD=34x﹣3,
    ∴(34x2-94x﹣3)﹣(34x﹣3)=x,
    解得:x1=163,x2=0(不合题意舍去),
    ∴⊙M的半径为:EM=163;
    综上所述,⊙M的半径为94或83或154或163.






    5.如图,在直角坐标系中有,为坐标原点,,,将此三角形绕原点顺时针旋转,得到,二次函数的图象刚好经过,,三点.
    (1)求二次函数的解析式及顶点的坐标;
    (2)过定点的直线与二次函数图象相交于,两点.
    ①若,求的值;
    ②证明:无论为何值,恒为直角三角形;
    ③当直线绕着定点旋转时,外接圆圆心在一条抛物线上运动,直接写出该抛物线的表达式.

    【分析】(1)求出点、、的坐标分别为、、,即可求解;
    (2)①,则,即可求解;②,即可求解;③取的中点,则点是外接圆圆心,即可求解.
    【解答】解:(1),,则,,
    即点、、的坐标分别为、、,
    则二次函数表达式为:,
    即:,解得:,
    故函数表达式为:,
    点;
    (2)将二次函数与直线的表达式联立并整理得:

    设点、的坐标为,、,,
    则,,
    则:,
    同理:,
    ①,当时,,即点,
    ,则,

    解得:;
    ②点、的坐标为,、,、点,
    则直线表达式中的值为:,直线表达式中的值为:,
    为:,
    故,
    即:恒为直角三角形;
    ③取的中点,则点是外接圆圆心,

    设点坐标为,
    则,

    整理得:,
    即:该抛物线的表达式为:.
    6.(2019•黄冈)如图①,在平面直角坐标系xOy中,已知A(﹣2,2),B(﹣2,0),C(0,2),D(2,0)四点,动点M以每秒个单位长度的速度沿B→C→D运动(M不与点B、点D重合),设运动时间为t(秒).
    (1)求经过A、C、D三点的抛物线的解析式;
    (2)点P在(1)中的抛物线上,当M为BC的中点时,若△PAM≌△PBM,求点P的坐标;
    (3)当M在CD上运动时,如图②.过点M作MF⊥x轴,垂足为F,ME⊥AB,垂足为E.设矩形MEBF与△BCD重叠部分的面积为S,求S与t的函数关系式,并求出S的最大值;
    (4)点Q为x轴上一点,直线AQ与直线BC交于点H,与y轴交于点K.是否存在点Q,使得△HOK为等腰三角形?若存在,直接写出符合条件的所有Q点的坐标;若不存在,请说明理由.

    权所有
    【分析】(1)设函数解析式为y=ax2+bx+c,将点A(﹣2,2),C(0,2),D(2,0)代入解析式即可;
    (2)由已知易得点P为AB的垂直平分线与抛物线的交点,点P的纵坐标是1,则有1=﹣﹣x+2,即可求P;
    (3)S=(GM+BF)×MF=(2t﹣4+t)×(4﹣t)=﹣+8t﹣8=﹣(t﹣)2+;
    (4)设点Q(m,0),直线BC的解析式y=﹣x+2,直线AQ的解析式y=﹣(x+2)+2,求出点K(0,),H(,),由勾股定理可得OK2=,OH2=+,HK2=+,分三种情况讨论△HOK为等腰三角形即可;
    【解答】解:(1)设函数解析式为y=ax2+bx+c,
    将点A(﹣2,2),C(0,2),D(2,0)代入解析式可得

    ∴,
    ∴y=﹣﹣x+2;
    (2)∵△PAM≌△PBM,
    ∴PA=PB,MA=MB,
    ∴点P为AB的垂直平分线与抛物线的交点,
    ∵AB=2,
    ∴点P的纵坐标是1,
    ∴1=﹣﹣x+2,
    ∴x=﹣1+或x=﹣1﹣,
    ∴P(﹣1﹣,1)或P(﹣1+,1);
    (3)CM=t﹣2,MG=CM=2t﹣4,
    MD=4﹣(BC+CM)=4﹣(2+t﹣2)=4﹣t,
    MF=MD=4﹣t,
    ∴BF=4﹣4+t=t,
    ∴S=(GM+BF)×MF=(2t﹣4+t)×(4﹣t)=﹣+8t﹣8=﹣(t﹣)2+;
    当t=时,S最大值为;
    (4)设点Q(m,0),直线BC的解析式y=﹣x+2,
    直线AQ的解析式y=﹣(x+2)+2,
    ∴K(0,),H(,),
    ∴OK2=,OH2=+,HK2=+,
    ①当OK=OH时,=+,
    ∴m2﹣4m﹣8=0,
    ∴m=2+2或m=2﹣2;
    ②当OH=HK时,+=+,
    ∴m2﹣8=0,
    ∴m=2或m=﹣2;
    ③当OK=HK时,=+,不成立;
    综上所述:Q(2+2,0)或Q(2﹣2,0)或Q(2,0)或Q(﹣2,0);

    相关试卷

    专题十五 二次函数与面积问题-2022年中考数学二轮复习之重难热点提分专题:

    这是一份专题十五 二次函数与面积问题-2022年中考数学二轮复习之重难热点提分专题,文件包含专题十五二次函数与面积问题-2022年中考数学二轮复习之重难热点提分专题解析版docx、专题十五二次函数与面积问题-2022年中考数学二轮复习之重难热点提分专题原卷版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。

    专题十四 二次函数与线段问题-2022年中考数学二轮复习之重难热点提分专题:

    这是一份专题十四 二次函数与线段问题-2022年中考数学二轮复习之重难热点提分专题,文件包含专题十四二次函数与线段问题-2022年中考数学二轮复习之重难热点提分专题解析版docx、专题十四二次函数与线段问题-2022年中考数学二轮复习之重难热点提分专题原卷版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。

    专题十七 二次函数与平行四边形存在问题-2022年中考数学二轮复习之重难热点提分专题:

    这是一份专题十七 二次函数与平行四边形存在问题-2022年中考数学二轮复习之重难热点提分专题,文件包含专题十七二次函数与平行四边形存在问题-2022年中考数学二轮复习之重难热点提分专题解析版docx、专题十七二次函数与平行四边形存在问题-2022年中考数学二轮复习之重难热点提分专题原卷版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map