- (全国通用)2022年中考数学命题点及重难题型分类突破练 类型二 交点问题(原卷版+解析版) 试卷 1 次下载
- (全国通用)2022年中考数学命题点及重难题型分类突破练 类型二 与图形面积有关的问题(原卷版+解析版) 试卷 1 次下载
- (全国通用)2022年中考数学命题点及重难题型分类突破练 类型六 与三角形全等、相似有关的问题(原卷版+解析版) 试卷 1 次下载
- (全国通用)2022年中考数学命题点及重难题型分类突破练 类型三 角度问题(原卷版+解析版) 试卷 1 次下载
- (全国通用)2022年中考数学命题点及重难题型分类突破练 类型七 与圆有关的问题(原卷版+解析版) 试卷 1 次下载
- (全国通用)2022年中考数学命题点及重难题型分类突破练 类型二 新概念的理解与应用(原卷版+解析版) 试卷 1 次下载
(全国通用)2022年中考数学命题点及重难题型分类突破练 类型三 与实际问题结合的函数性质探究(原卷版+解析版)
展开类型三与实际问题结合的函数性质探究
1.根据记录,从地面向上11km以内,每升高1km,气温降低6℃;又知在距离地面11km以上高空,气温几乎不变.若地面气温为m(℃),设距地面的高度为x(km)处的气温为y(℃)
(1)写出距地面的高度在11km以内的y与x之间的函数表达式;
(2)上周日,小敏在乘飞机从上海飞回西安途中,某一时刻,她从机舱内屏幕显示的相关数据得知,飞机外气温为﹣26℃时,飞机距离地面的高度为7km,求当时这架飞机下方地面的气温;小敏想,假如飞机当时在距离地面12km的高空,飞机外的气温是多少度呢?请求出假如当时飞机距离地面12km时,飞机外的气温.
【分析】(1)根据气温等于该处的温度减去下降的温度列式即可;
(2)根据(1)的结论解答即可.
【解答】解:(1)根据题意得:y=m﹣6x;
(2)将x=7,y=﹣26代入y=m﹣6x,得﹣26=m﹣42,∴m=16
∴当时地面气温为16℃
∵x=12>11,
∴y=16﹣6×11=﹣50(℃)
假如当时飞机距地面12km时,飞机外的气温为﹣50℃.
2.某游泳馆推出了两种收费方式.
方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.
方式二:顾客不购买会员卡,每次游泳付费40元.
设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).
(1)请分别写出y1,y2与x之间的函数表达式.
(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.
【分析】(1)根据题意列出函数关系式即可;
(2)根据(1)中的函数关系式列不等式即可得到结论.
【解答】解:(1)当游泳次数为x时,方式一费用为:y1=30x+200,方式二的费用为:y2=40x;
(2)由y1<y2得:30x+200<40x,
解得x>20时,
当x>20时,选择方式一比方式二省钱.
利用反比例函数解决实际问题,首先是建立函数模型.一般地,建立函数模型有两种思路:一是通过问题提供的信息,知道变量之间的函数关系,在这种情况下,可先设出函数的表达式y=(k≠0),再由已知条件确定表达式中k的取值即可;二是问题本身的条件中不确定变量间是什么关系,此时要通过分析找出变量的关系并确定函数表达式.
3.甲、乙两车分别从A,B两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到B地,乙车立即以原速原路返回到B地.甲、乙两车距B地的路程y(km)与各自行驶的时间x(h)之间的关系如图所示.
(1)m= ,n= ;
(2)求乙车距B地的路程y关于x的函数解析式,并写出自变量x的取值范围;
(3)当甲车到达B地时,求乙车距B地的路程.
【分析】(1)观察图象即可解决问题;
(2)运用待定系数法解得即可;
(3)把x=3代入(2)的结论即可.
【解答】解:(1)根据题意可得m=2×2=4,n=280﹣280÷3.5=120;
故答案为:4;120;
(2)设y关于x的函数解析式为y=kx(0≤x≤2),
因为图象经过(2,120),
所以2k=120,
解得k=60,
所以y关于x的函数解析式为y=60x,
设y关于x的函数解析式为y=k1x+b(2≤x≤4),
因为图象经过(2,120),(4,0)两点,
所以,
解得,
所以y关于x的函数解析式为y=﹣60+240(2≤x≤4);
(3)当x=3.5时,y=﹣60×3.5+240=30.
所以当甲车到达B地时,乙车距B地的路程为30km.
4.某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:
(1)求y与x的函数解析式(也称关系式);
(2)求这一天销售西瓜获得的利润W的最大值.
【分析】(1),根据函数图象得到直线上的两点,再结合待定系数法即可求得y与x的函数解析式;
(2),根据总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.
【解答】解:
(1)当6≤x≤10时,设y与x的关系式为y=kx+b(k≠0)
根据题意得,解得
∴y=﹣200x+2200
当10<x≤12时,y=200
故y与x的函数解析式为:y=
(2)由已知得:W=(x﹣6)y
当6≤x≤10时,
W=(x﹣6)(﹣200x+2200)=﹣200(x﹣)2+1250
∵﹣200<0,抛物线的开口向下
∴x=时,取最大值,
∴W=1250
当10<x≤12时,W=(x﹣6)•200=200x﹣1200
∵y随x的增大而增大
∴x=12时取得最大值,W=200×12﹣1200=1200
综上所述,当销售价格为8.5元时,取得最大利润,最大利润为1250元.
5.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,则动力F(单位:N)关于动力臂l(单位:m)的函数解析式正确的是( )
A.F= B.F= C.F= D.F=
【答案】B.
【分析】直接利用阻力×阻力臂=动力×动力臂,进而将已知量据代入得出函数关系式.
【解答】解:∵阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,
∴动力F(单位:N)关于动力臂l(单位:m)的函数解析式为:1200×0.5=Fl,
则F=.
故选:B.
6.方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.
(1)求v关于t的函数表达式;
(2)方方上午8点驾驶小汽车从A地出发.
①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.
②方方能否在当天11点30分前到达B地?说明理由.
【分析】(1)由速度乘以时间等于路程,变形即可得速度等于路程比时间,从而得解;
(2)①8点至12点48分时间长为小时,8点至14点时间长为6小时,将它们分别代入v关于t的函数表达式,即可得小汽车行驶的速度范围;
②8点至11点30分时间长为小时,将其代入v关于t的函数表达式,可得速度大于120千米/时,从而得答案.
【解答】解:(1)∵vt=480,且全程速度限定为不超过120千米/小时,
∴v关于t的函数表达式为:v=,(0≤t≤4).
(2)①8点至12点48分时间长为小时,8点至14点时间长为6小时
将t=6代入v=得v=80;将t=代入v=得v=100.
∴小汽车行驶速度v的范围为:80≤v≤100.
②方方不能在当天11点30分前到达B地.理由如下:
8点至11点30分时间长为小时,将t=代入v=得v=>120千米/小时,超速了.
故方方不能在当天11点30分前到达B地.
7.如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.
(1)求k,并用t表示h;
(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;
(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.
【分析】(1)用待定系数法解题即可;
(2)根据题意,分别用t表示x、y,再用代入消元法得出y与x之间的关系式;
(3)求出甲距x轴1.8米时的横坐标,根据题意求出乙位于甲右侧超过4.5米的v乙.
【解答】解:(1)由题意,点A(1,18)带入y=
得:18=
∴k=18
设h=at2,把t=1,h=5代入
∴a=5
∴h=5t2
(2)∵v=5,AB=1
∴x=5t+1
∵h=5t2,OB=18
∴y=﹣5t2+18
由x=5t+1
则t=
∴y=﹣
当y=13时,13=﹣
解得x=6或﹣4
∵x≥1
∴x=6
把x=6代入y=
y=3
∴运动员在与正下方滑道的竖直距离是13﹣3=10(米)
(3)把y=1.8代入y=﹣5t2+18
得t2=
解得t=1.8或﹣1.8(负值舍去)
∴x=10
∴甲坐标为(10,1.8)恰好落在滑道y=上
此时,乙的坐标为(1+1.8v乙,1.8)
由题意:1+1.8v乙﹣(1+5×1.8)>4.5
∴v乙>7.5
8.甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg.在乙批发店,一次购买数量不超过50kg时,价格为7元/kg;一次购买数量超过50kg时,其中有50kg的价格仍为7元/kg,超过50kg部分的价格为5元/kg.设小王在同一个批发店一次购买苹果的数量为xkg(x>0).
(Ⅰ)根据题意填表:
一次购买数量/kg
30
50
150
…
甲批发店花费/元
300
…
乙批发店花费/元
350
…
(Ⅱ)设在甲批发店花费y1元,在乙批发店花费y2元,分别求y1,y2关于x的函数解析式;
(Ⅲ)根据题意填空:
①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为 kg;
②若小王在同一个批发店一次购买苹果的数量为120kg,则他在甲、乙两个批发店中 批发店购买花费少;
③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的 批发店购买数量多.
【分析】(Ⅰ)根据题意,甲批发店花费 y1(元)=6×购买数量x(千克);6×30=180,6×150=900;而乙批发店花费 y2(元),当一次购买数量不超过50kg时,y2=7××30=210元;一次购买数量超过50kg时,y2=7×50+5(150﹣50)=850元.
(Ⅱ)根据题意,甲批发店花费 y1(元)=6×购买数量x(千克);而乙批发店花费 y2(元)在一次购买数量不超过50kg时,y2(元)=7×购买数量x(千克);一次购买数量超过50kg时,y2(元)=7×50+5(x﹣50);即:花费 y2(元)是购买数量x(千克)的分段函数.
(Ⅲ)①花费相同,即y1=y2;可利用方程解得相应的x的值;
②求出在x=120时,所对应的y1、y2的值,比较得出结论.实际上是已知自变量的值求函数值.
③求出当y=360时,两店所对应的x的值,比较得出结论.实际是已知函数值求相应的自变量的值.
【解答】解:(Ⅰ)甲批发店:6×30=180元,6×150=900元;乙批发店:7××30=210元,7×50+5(150﹣50)=850元.
故依次填写:180 900 210 850.
(Ⅱ)y1=6x (x>0)
当0<x≤50时,y2=7x (0<x≤50)
当x>50时,y2=7×50+5(x﹣50)=5x+100 (x>50)
因此y1,y2与x的函数解析式为:y1=6x (x>0); y2=7x (0<x≤50)y2=5x+100 (x>50)
(Ⅲ)①当y1=y2时,有:6x=7x,解得x=0,不和题意舍去;
当y1=y2时,也有:6x=5x+100,解得x=100,
故他在同一个批发店一次购买苹果的数量为100千克.
②当x=120时,y1=6×120=720元,y2=5×120+100=700元,
∵720>700
∴乙批发店花费少.
故乙批发店花费少.
③当y=360时,即:6x=360和5x+100=360;解得x=60和x=52,
∵60>52
∴甲批发店购买数量多.
故甲批发店购买的数量多.
9.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴简历平面直角坐标系,则此抛物线钢拱的函数表达式为( )
A. B. C. D.
图1 图2
【答案】B
【解析】设抛物线的解析式为将代入得:
∴抛物线解析式为:,故选B
显然区域中整数点有(0,-1)、(0,0)、(1,-1)、(1,0)、(1,1)、(1,2);显然区域内的整点个数有6个.
② 由类似①分析图象知区域内没有整点时有或.
10.工厂生产一种火爆的网红电子产品,每件产品成本16元,工厂将该产品进行网络批发,批发单价y(元)与一次性批发量x(件)(x为正整数)之间满足如图所示的函数关系.
(1)直接写出y与x之间所满足的函数关系式,并写出自变量x的取值范围;
(2)若一次性批发量不超过60件,当批发量为多少件时,工厂获利最大?最大利润是多少?
【答案】见解析。
【解析】本题主要考查一次函数和二次函数的应用.
认真观察图象,分别写出该定义域下的函数关系式,定义域取值全部是整数;根据利润=(售价-成本)×件数,列出利润的表达式,求出最值.
(1) 当0<x≤20且x为整数时,y=40;
当20<x≤60且x为整数时,y=-x+50;
当x>60且x为整数时,y=20;
(2)设所获利润w(元),
当0<x≤20且x为整数时,y=40,
∴w=(40-16)×20=480元,
当0<x≤20且x为整数时,y=40,
∴当20<x≤60且x为整数时,y=-x+50,
∴w=(y-16)x=(-x+50-16)x,
∴w=-x2+34x,
∴w=-(x-34)2+578,
∵-<0,
∴当x=34时,w最大,最大值为578元.
答:一次批发34件时所获利润最大,最大利润是578元.
11.杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的运动路线是抛物线y=-x2+3x+1的一部分,如图所示.
(1)求演员弹跳离地面的最大高度是 ;
(2)已知人梯高BC=3.4 m,在一次表演中,人梯到起跳点A的水平距离是4 m,则这次表演 (填能或否) 成功.
【答案】(1).(2)能.
【分析】(1)将函数表达式配方成顶点式,即可求得演员弹跳地面的最大高度;(2)将点(4,3.4)代入函数表达式,验证该点是否在抛物线上.在,说明表演能够成功;不在,说明表演不能成功.
【解答】解:(1)y=-x2+3x+1
=-+.
∵a=-<0,∴函数有最大值,
即演员弹跳离地面的最大高度是 m;
(2)由于OC=4 m,故将x=4代入函数表达式,得y=-×42+3×4+1=3.4,因此点(4,3.4)在该抛物线上,说明这次表演能够成功.
12.如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出发,骑车向北匀速直行;与此同时,乙从点A出发,沿北京路步行向东匀速直行.设出发xmin时,甲、乙两人与点A的距离分别为y1m、y2m.已知y1、y2与x之间的函数关系如图②所示.
(1)求甲、乙两人的速度;
(2)当x取何值时,甲、乙两人之间的距离最短?
【分析】(1)设甲、乙两人的速度,并依题意写出函数关系式,再根据图②中函数图象交点列方程组求解;
(2)设甲、乙之间距离为d,由勾股定理可得d2=(1200﹣240x)2+(80x)2 =64000(x﹣)2+144000,根据二次函数最值即可得出结论.
【解答】解:(1)设甲、乙两人的速度分别为am/min,bm/min,则:
y1=
y2=bx
由图②知:x=3.75或7.5时,y1=y2,∴,解得:
答:甲的速度为240m/min,乙的速度为80m/min.
(2)设甲、乙之间距离为d,
则d2=(1200﹣240x)2+(80x)2
=64000(x﹣)2+144000,
∴当x=时,d2的最小值为144000,即d的最小值为120;
答:当x=时,甲、乙两人之间的距离最短.
13.商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.
(1)求该商品每天的销售量y与销售单价x之间的函数关系式;
(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?
(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?
【解析】解:(1)设与销售单价之间的函数关系式为:,
将点、代入一次函数表达式得:,
解得:,
故函数的表达式为:;
(2)由题意得:,
,故当时,随的增大而增大,而,
当时,由最大值,此时,,
故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;
(3)由题意得:,
解得:,
每天的销售量,
每天的销售量最少应为20件.
14.“互联网+”时代上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.
(1)直接写出y与x的函数关系式;
(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?
【答案】(1)y=﹣5x+500;
(2)当降价10元时,每月获得最大利润为4500元;
(3)当销售单价定为66元时,即符合网店要求,又能让顾客得到最大实惠.
【解答】解:(1)由题意可得:y=100+5(80﹣x)整理得 y=﹣5x+500;
(2)由题意,得:
w=(x﹣40)(﹣5x+500)
=﹣5x2+700x﹣20000
=﹣5(x﹣70)2+4500
∵a=﹣5<0∴w有最大值
即当x=70时,w最大值=4500
∴应降价80﹣70=10(元)
答:当降价10元时,每月获得最大利润为4500元;
(3)由题意,得:
﹣5(x﹣70)2+4500=4220+200
解之,得:x1=66,x2 =74,
∵抛物线开口向下,对称轴为直线x=70,
∴当66≤x≤74时,符合该网店要求
而为了让顾客得到最大实惠,故x=66
∴当销售单价定为66元时,即符合网店要求,又能让顾客得到最大实惠.
15.网络销售已经成为一种热门的销售方式.为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗.为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足关系式:y=﹣100x+5000.经销售发现,销售单价不低于成本价且不高于30元/kg.当每日销售量不低于4000kg时,每千克成本将降低1元.该板栗公司销售该板栗的日获利为W(元).
(1)请求出日获利W与销售单价x之间的函数关系式;
(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?
(3)当W≥40000元时,网络平台将向板栗公司收取a元/kg(a<4)的相关费用,若此次获利的最大值为42100元,求a的值.
【解析】本题考查了二次函数的实际应用.涉及到分段函数、二次函数的最值、分类讨论等.(1)先根据条件“每日销售量不低于4000kg”求出自变量x的取值范围,再分类讨论,分别写出日获利W与销售单价x之间的函数关系式;(2)分别求出(1)中的两个二次函数的最大值,再比较这两个最大值,从而确定销售这种板栗日获利最大值;(3)先由W≥40000求出自变量的取值范围,根据最大值42100确定a的值.
【答案】解:(1)当y≥4000,即﹣100x+5000≥4000,
∴x≤10.
∴当6≤x≤10时,w==;
当10<x≤30时,w==.
∴w=.
(2)当6≤x≤10时,w=.
∵对称轴为x=>10,∴当x=10时,wmax=5×4000-2000=18000元.
当10<x≤30时,w=.
∵对称轴为x=28,∴当x=28时,wmax=22×2200-2000=46400元.
∵46400>18000,综上,当销售单价定为28元时,日获利最大,且最大为46400元.
(3)∵40000>18000,∴10<x≤30,则w=.
令w=40000,则=40000.解得:x1=20,x2=36.
在平面直角坐标系中,画出w与x的函数示意图,如答图所示,
观察示意图可知:w≥40000,20≤x≤36.又∵10<x≤30,∴20≤x≤30.
∴w1==.
对称轴为x=28+.∵a<4,∴对称轴x=28+<30.
∴当x=28+时,wmax=42100元.
∴.
∴.∴a1=2,a2=86.又∵a<4,∴a =2.
16.某公司分别在A,B两城生产同种产品,共100件.A城生产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx.当x=10时,y=400;当x=20时,y=1000.B城生产产品的每件成本为70万元,
(1)求a,b的值;
(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?
(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).
【解析】本题考查了实际问题与二次函数及利用二次函数求实际问题的最值,检查学生梳理应用信息的能力.(1)依据题意列出二元一次方程组求解,即可得出结论;(2)A,B两城生产这批产品的总成本的和为W元,先列出W关于x的函数关系式,再利用函数性质求最大值,从而得到总成本的和最少时A,B两城各生产多少件;(3)先设A城运往C地t件、B城运往C地90-t件、A城运往D地20-t件、所以B城运往D地80-(90-t)= t-10件,求得10≤t≤20,这样就能列出A,B两城总运费的和mt+3×(20-t)+1×(90-t)+2×(t-10)=(m-2)t +130,根据一次函数最值可得当m-2>0时, t取最小值10时,A,B两城总运费的和最小值为10m+110;当m=2时,最小值为130;当m-2<0时,t取最大值20时,A,B两城总运费的和最小值为20m+90.
【答案】解:(1)依题意,得∴
答:a的值为1,b 的值为30
(2) 设A,B两城生产这批产品的总成本的和为W万元
W=+30x+70(100-x)=-40x+7000=
∵a=1>0,∴当x=20时,A,B两城生产这批产品的总成本的和W最少,
100-x=80
答:A城生产20件,B城生产80件
(3)当m>2时,最小值为10m+110;
当m=2时,最小值为130;
当0
(全国通用)2022年中考数学命题点及重难题型分类突破练 类型二 动点探究题(原卷版+解析版): 这是一份(全国通用)2022年中考数学命题点及重难题型分类突破练 类型二 动点探究题(原卷版+解析版),文件包含全国通用2022年中考数学命题点及重难题型分类突破练类型二动点探究题解析版docx、全国通用2022年中考数学命题点及重难题型分类突破练类型二动点探究题原卷版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
(全国通用)2022年中考数学命题点及重难题型分类突破练 类型五 折叠探究题(原卷版+解析版): 这是一份(全国通用)2022年中考数学命题点及重难题型分类突破练 类型五 折叠探究题(原卷版+解析版),文件包含全国通用2022年中考数学命题点及重难题型分类突破练类型五折叠探究题解析版docx、全国通用2022年中考数学命题点及重难题型分类突破练类型五折叠探究题原卷版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
(全国通用)2022年中考数学命题点及重难题型分类突破练 类型四 旋转探究题(原卷版+解析版): 这是一份(全国通用)2022年中考数学命题点及重难题型分类突破练 类型四 旋转探究题(原卷版+解析版),文件包含全国通用2022年中考数学命题点及重难题型分类突破练类型四旋转探究题解析版docx、全国通用2022年中考数学命题点及重难题型分类突破练类型四旋转探究题原卷版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。