所属成套资源:(全国通用)2022年中考数学命题点及重难题型分类突破练解析版+原卷版
(全国通用)2022年中考数学命题点及重难题型分类突破练 类型二 动点探究题(原卷版+解析版)
展开
这是一份(全国通用)2022年中考数学命题点及重难题型分类突破练 类型二 动点探究题(原卷版+解析版),文件包含全国通用2022年中考数学命题点及重难题型分类突破练类型二动点探究题解析版docx、全国通用2022年中考数学命题点及重难题型分类突破练类型二动点探究题原卷版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
类型二动点探究题1.如图,△ABC中,AB=BC,BD⊥AC于点D,∠FAC=∠ABC,且∠FAC在AC下方,点P,Q分别是射线BD,射线AF上的动点,且点P不与点B重合,点Q不与点A重合,连接CQ,过点P作PE⊥CQ于点E,连接DE.(1)若∠ABC=60°,BP=AQ.①如图①,当点P在线段BD上运动时,请直接写出线段DE和线段AQ的数量关系和位置关系;②如图②,当点P运动到线段BD的延长线上时,试判断①中的结论是否成立,并说明理由;(2)若∠ABC=2α≠60°,请直接写出当线段BP和线段AQ满足什么数量关系时,能使(1)中①的结论仍然成立(用含α的三角函数表示). 2.如图,等边△ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形.(1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?(2)如图②,当点M在线段BC上时,其他条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论是否仍然成立?若成立,请直接写出结论,若不成立请说明理由. 3.如图所示,在正方形ABCD和△EFG中,AB=EF=EG=5cm,FG=8cm,点B、C、F、G在同一条直线l上.当点C,F重合时,△EFG以1cm/s的速度沿直线l向左开始运动,t秒后正方形ABCD与△EFG重合,部分的面积为Scm2.请解答下列问题:(1)当t=3秒时,求S的值;(2)当t=5秒时,求S的值;(3)当5秒<t≤8秒时,求S与t的函数关系式,并求出S的最大值. 4.已知,在矩形ABCD中,BC=2AB,点M为AD边的中点,连接BD,点P是对角线BD上的动点,连接AP,以点P为顶点作∠EPF=90°,PE交AB边于点E,PF交AD边于点F.(1)发现问题如图①,当点P运动过程中∠PBA与∠PAB互余时,线段BE、MF与AB的数量关系为__________;(2)解决问题如图②,当点P运动过程中∠PBA与∠PAB相等时,请判断(1)中的结论是否成立?若成立,请给出证明;若不成立,请说明理由;(3)拓展延伸在(2)的条件下,连接EF并延长EF,交直线BD于点G,若BE∶AF=2∶3,EF=,求DG的长. 5.【问题情境】已知Rt△ABC中,∠BAC=90°,AB=AC,点E是线段AC上的一个动点(不与A、C重合),以CE为一边作Rt△DCE,使∠DCE=90°,且CD=CA.沿CA方向平移△CDE,使点C移动到点A,得到△ABF.过点F作FG⊥BC,交线段BC于点G,连接DG、EG.【深入探究】(1)如图①,当点E在线段AC上时,小文猜想GC=GF,请你帮他证明这一结论;(2)如图②,当点E在线段AC的延长线上,且CE<CA时,猜想线段DG与EG的数量关系和位置关系,并证明你的猜想;【拓展应用】(3)如图③,将(2)中的“CE<CA”改为“CE>CA”,若设∠CDE=α,请用含α的式子表示∠CGE的度数(直接回答即可,不必证明). 6.如图,在平面直角坐标系中,一次函数的图像与x轴和y轴分别相交于A、B两点。动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动。点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN。设运动时间为x秒。(1) 当秒时,点Q的坐标是 ;(2) 在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3) 若正方形PQMN对角线的交点为T,请直接写出运动过程中OT+PT的最小值。 7.问题提出(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为 .问题探究(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM的最大值.问题解决(3)如图③所示,AB、AC、是某新区的三条规划路,其中,AB=6 km,AC=3 km,∠BAC=60°,所对的圆心角为60°.新区管委会想在路边建物资总站点P,在AB、AC路边分别建物资分站点E、F,也就是,分别在、线段AB和AC上选取点P、E、F.由于总站工作人员每天都要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷、环保和节约成本,要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计) 8.已知在△ABC中,AB边上的动点D由A向B运动(与A,B不重合),点E与点D同时出发,由点C沿BC的延长线方向运动(E不与C重合),连接DE交AC于F,点H是线段AF上一点.(1)初步尝试如图①,若△ABC是等边三角形,DH⊥AC,且点D,E的运动速度相等,过点D作DG∥BC交AC于点G,则GH与AH的数量关系是________,GF与FC的数量关系是________,的值是________;(2)类比探究如图②,若在△ABC中,∠ABC=90°,∠ADH=∠A=30°,且点D,E的运动速度之比是∶1,求的值;(3)延伸拓展如图③,若在△ABC中,AB=AC,∠ADH=∠A=36°,记=m,且点D,E的运动速度相等,试用含m的代数式表示.(直接写出结果,不必写出解答过程)9.如图,在正方形ABCD中,AB=10cm,E为对角线BD上一动点,连接AE,CE,过E点作EF⊥AE,交直线BC于点F.E点从B点出发,沿着BD方向以每秒2cm的速度运动,当点E与点D重合时,运动停止,设△BEF的面积为ycm2,E点的运动时间为x秒.(1)求证:CE=EF;(2)求y与x之间关系的函数表达式,并写出自变量x的取值范围;(3)求△BEF面积的最大值. 10.如图,在半面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形 OMCD的面积为时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值. 11.如图,在等边△ABC中,AB=6cm,动点P从点A出发以cm/s的速度沿AB匀速运动.动点Q同时从点C出发以同样的速度沿BC延长线方向匀速运动.当点P到达点B时,点P、Q同时停止运动.设运动时间为t(s).过点P作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB′的值最小?并求出最小值. 12.已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=2cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM的面积为S(cm2),S与t的函数关系如图②所示.(1)直接写出动点M的运动速度为 cm/s,BC的长度为 cm;(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为v(cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN的面积分别为S1(cm2),S2(cm2)①求动点N运动速度v(cm/s)的取值范围;②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由. 图① 图② 图③ 13.如图1.已知点O在四边形ABCD的边AB上,且OA=OB=OC=OD=2,OC平分∠BOD,与BD交于点G,AC分别与BD、OD交于点E、F.
(1)求证:OC∥AD;
(2)如图2,若DE=DF,求的值;
(3)当四边形ABCD的周长取最大值时,求DE的值.
相关试卷
这是一份(全国通用)2022年中考数学命题点及重难题型分类突破练 类型五 折叠探究题(原卷版+解析版),文件包含全国通用2022年中考数学命题点及重难题型分类突破练类型五折叠探究题解析版docx、全国通用2022年中考数学命题点及重难题型分类突破练类型五折叠探究题原卷版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
这是一份(全国通用)2022年中考数学命题点及重难题型分类突破练 类型四 旋转探究题(原卷版+解析版),文件包含全国通用2022年中考数学命题点及重难题型分类突破练类型四旋转探究题解析版docx、全国通用2022年中考数学命题点及重难题型分类突破练类型四旋转探究题原卷版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
这是一份(全国通用)2022年中考数学命题点及重难题型分类突破练 类型二 交点问题(原卷版+解析版),文件包含全国通用2022年中考数学命题点及重难题型分类突破练类型二交点问题解析版docx、全国通用2022年中考数学命题点及重难题型分类突破练类型二交点问题原卷版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。