初中数学冀教版七年级下册第九章 三角形综合与测试练习
展开
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试练习,共20页。
冀教版七年级数学下册第九章 三角形月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图, ( )A.180° B.360° C.270° D.300°2、如图,图形中的的值是( )A.50 B.60 C.70 D.803、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是( )A.50° B.60° C.40° D.30°4、如图,将的BC边对折,使点B与点C重合,DE为折痕,若,,则( ).A.45° B.60° C.35° D.40°5、如图,将一个含有30°角的直角三角板放置在两条平行线a,b上,若,则的度数为( )A.85° B.75° C.55° D.95°6、如图,将一副三角板平放在一平面上(点D在上),则的度数为( )A. B. C. D.7、王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?( )A.0根 B.1根 C.2根 D.3根8、如图所示,一副三角板叠放在一起,则图中等于( ) A.105° B.115° C.120° D.135°9、下列各组线段中,能构成三角形的是( )A.2、4、7 B.4、5、9 C.5、8、10 D.1、3、610、如图,把△ABC绕顶点C按顺时针方向旋转得到△A′B′C′,当A′B′⊥AC,∠A=50°,∠A′CB=115°时,∠B′CA的度数为( )A.30° B.35° C.40° D.45°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、两根长度分别为3,5的木棒,若想钉一个三角形木架,第三根木棒的长度可以是________.(写一个值即可)2、一个三角形的两边长分别为2和5,则第三边的长度可取的整数值为_________(写出一个即可).3、边长为1的小正方形组成如图所示的6×6网格,点A,B,C,D,E,F,G,H都在格点上.其中到四边形ABCD四个顶点距离之和最小的点是_________.4、如图,,,BE平分交AD于点E,连接CE,AF交CD的延长线于点F,,若,,则的度数为______.5、若△ABC的边AB、BC的长是方程组的解,设边AC的长为m,则m的取值范围是_____.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC中,∠BAC=40°,∠B=75°,AD是△ABC的角平分线,求∠ADB的度数.2、如图,点A和点C分别在的边BD,BE上,并且,.(1)直接写出BC的取值范围;(2)若,,,求的度数.3、如图所示,四边形ABCD中,ADC的角平分线DE与BCD的角平分线CA相交于E点,已知:ACB=32°,CDE=58°.(1)求DEC的度数;(2)试说明直线4、如图,在△ABC中,CE平分∠ACB交AB于点E,AD是△ABC边BC上的高,AD与CE相交于点F,且∠ACB=80°,求∠AFE的度数.5、如图是A、B、C三岛的平面图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向.从C岛看A、B岛的视角∠ACB为多少? -参考答案-一、单选题1、A【解析】【分析】利用三角形外角定理及三角形内角和公式求解即可.【详解】解:∵∠7=∠4+∠2,∠6=∠1+∠3,∴∠6+∠7=∠1+∠2+∠3+∠4,∵∠5+∠6+∠7=180°,∴∠1+∠2+∠3+∠4+∠5=180°.故选:A.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.2、B【解析】【分析】根据三角形外角的性质:三角形一个外角的度数等于与其不相邻的两个内角的度数和进行求解即可.【详解】解:由题意得: ∴,∴,故选B.【点睛】本题主要考查了三角形外角的性质,解一元一次方程,熟知三角形外角的性质是解题的关键.3、A【解析】【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将△OAB绕点O逆时针旋转80°得到△OCD, ∠A的度数为110°,∠D的度数为40°, 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.4、A【解析】【分析】由折叠得到∠B=∠BCD,根据三角形的内角和得∠A+∠B+∠ACB=180°,代入度数计算即可.【详解】解:由折叠得∠B=∠BCD,∵∠A+∠B+∠ACB=180°,,,∴65°+2∠B+25°=180°,∴∠B=45°,故选:A.【点睛】此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键.5、A【解析】【分析】由平行线的性质,得,然后由三角形外角的性质,即可求出答案.【详解】解:由题意,如图,∵,∴,∵,∴;故选:A【点睛】本题考查了三角形的外角性质,平行线的性质,解题的关键是掌握所学的知识,正确求出.6、B【解析】【分析】根据三角尺可得,根据三角形的外角性质即可求得【详解】解:故选B【点睛】本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.7、B【解析】【分析】根据三角形的稳定性即可得.【详解】解:要使这个木架不变形,王师傅至少还要再钉上1根木条,将这个四边形木架分成两个三角形,如图所示:或故选:B.【点睛】本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题关键.8、A【解析】【分析】根据直角三角板各角的度数和三角形外角性质求解即可.【详解】解:如图,∠C=90°,∠DAE=45°,∠BAC=60°,∴∠CAO=∠BAC-∠DAE=60°-45°=15°,∴=∠C+∠CAO=90°+15°=105°,故选:A.【点睛】本题考查三角板中的度数计算、三角形的外角性质,熟知三角板各角度数,掌握三角形的外角性质是解答的关键.9、C【解析】【分析】根据三角形的三边关系定理逐项判断即可得.【详解】解:三角形的三边关系定理:任意两边之和大于第三边.A、,不能构成三角形,此项不符题意;B、,不能构成三角形,此项不符题意;C、,能构成三角形,此项符合题意;D、,不能构成三角形,此项不符题意;故选:C.【点睛】本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.10、B【解析】【分析】由旋转的性质可得∠A′=∠A=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠A′CA=40°,即可求解.【详解】解:根据旋转的性质可知∠A′=∠A=50°,∠BCB'=∠ACA',∴∠A′CA=90°﹣50°=40°,∴∠BCB′=∠A′CA=40°,∴∠B′CA=∠A′CB﹣∠A′CA﹣∠BCB′=115°﹣40°﹣40°=35°.故选:B.【点睛】本题主要考查了旋转的性质,三角形内角和定理的应用,解决这类问题要找准旋转角、以及旋转后对应的线段和角.二、填空题1、4(答案不唯一)【解析】【分析】根据三角形中“两边之和大于第三边,两边之差小于第三边”,进行分析得到第三边的取值范围;再进一步找到符合条件的数值.【详解】解:根据三角形的三边关系,得第三边应大于两边之差,即;而小于两边之和,即,即第三边,故第三根木棒的长度可以是4.故答案为:4(答案不唯一).【点睛】本题主要考查了三角形三边关系,熟练掌握两边之和大于第三边,两边之差小于第三边是解题的关键.2、4,5,6(写出一个即可)【解析】【分析】由构成三角形三边成立的条件可得第三条边的取值范围.【详解】设第三条长为x∵2+5=7,5-2=3∴3<x<7.故第三条边的整数值有4、5、6.故答案为:4,5,6(写出一个即可)【点睛】本题考查了构成三角形的三边关系,任意两边之和大于第三边,任意两边之差小于第三边,关键为“任意”两边均满足此关系.3、E【解析】【分析】到四边形ABCD四个顶点距离之和最小的点是对角线的交点,连接对角线,直接判断即可.【详解】如图所示,连接BD、AC、GA、GB、GC、GD,∵,,∴到四边形ABCD四个顶点距离之和最小是,该点为对角线的交点,根据图形可知,对角线交点为E,故答案为:E.【点睛】本题考查了三角形三边关系,解题关键是通过连接辅助线,运用三角形三边关系判断点的位置.4、80°##80度【解析】【分析】先根据,,得出,可证AD∥BC,再证∠BAD=∠BCD,得出∠AEB=∠F,然后证∠ABC=2∠CBE=2∠F,得出∠ADC=2∠F,利用三角形内角和得出∠CED=180°-∠EDC-∠ECD=180°-2∠F-3∠F=180°-5∠F,根据平角得出∠AEB+∠CED=180°-∠BEC=180°-80°=100°,列方程∠F+180°-5∠F=100°求出∠F=20°即可.【详解】解:∵,∴∠ABC+∠BCD=180°,∵∴,∴AD∥BC,∵,∴∠BAD+∠ADC=180°,∠BAF+∠F=180°,∵∠ADC+∠BCD=180°,∴∠BAD=∠BCD,∵,∴,∵∠BAF=∠BAD+∠DAF,∴∠BAF+∠AEB=180°,∴∠AEB=∠F,∵AD∥BC,∴∠CBE=∠AEB,∵BE平分,∴∠ABC=2∠CBE=2∠F,∴∠ADC=2∠F,∵,在△CED中,∠CED=180°-∠EDC-∠ECD=180°-2∠F-3∠F=180°-5∠F,∵,∴∠AEB+∠CED=180°-∠BEC=180°-80°=100°,∴∠F+180°-5∠F=100°,解得∠F=20°,∴,故答案为80°.【点睛】本题考查平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,掌握平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,关键是证出∠ADC=2∠F.5、3<m<9【解析】【分析】直接利用三角形三边关系得出答案.【详解】解:∵△ABC的边AB、BC的长是方程组的解,边AC的长为m,∴m的取值范围是:3<m<9,故答案为:3<m<9.【点睛】本题主要考查了三角形三边关系,正确掌握三角形三边关系是解题关键.三、解答题1、85°【解析】【分析】根据角平分线定义求出,根据三角形内角和定理得出,代入求出即可.【详解】解:平分,,,,.【点睛】本题考查了三角形内角和定理,角平分线定义的应用,解题的关键是注意:三角形的内角和等于.2、(1)1<BC<9;(2)60°【解析】【分析】(1)根据AB、BC、AC构成三角形,利用三角形三边关系即可得解;(2)根据平行线的性质可得,根据三角形外角性质可求即可.【详解】解:(1)∵,,∴AC+AB=9,AC-AB=1,∵AB、BC、AC构成三角形,∴AC-AB<BC<AC+AB,即1<BC<9;(2)∵,∴,∵,∴,∵∠ACE是△ABC的外角,,∴.【点睛】本题考查三角形三边关系,三角形外角性质,掌握三角形三边关系,三角形外角性质是解题关键.3、(1)90°;(2)见解析【解析】【分析】(1)根据三角形内角和定理即可求解;(2)首先求得∠ADC的度数和∠DCB的度数,根据同旁内角互补,两直线平行即可证得.【详解】解:(1)∵AC是BCD的平分线∴ ∵ ∴∠DEC=180°-∠ACD-∠CDE=180°-32°-58°=90°;(2)∵DE平分∠ADC,CA平分∠BCD∴∠ADC=2∠CDE=116°,∠BCD=2∠ACD=64°∵∠ADC+∠BCD=116°+64°=180°∴【点睛】本题主要考查了角平分线,平行线的判定以及三角形内角和定理,熟练掌握相关性质和定理是解答本题的关键.4、∠AFE=50°.【解析】【分析】根据CE平分∠ACB,∠ACB=80°,得出∠ECB=,根据高线性质得出∠ADC=90°,根据三角形内角和得出∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,利用对顶角性质得出∠AFE=∠DFC=50°即可.【详解】解:∵CE平分∠ACB,∠ACB=80°,∴∠ECB=,∵AD是△ABC边BC上的高,AD⊥BC,∴∠ADC=90°,∴∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,∴∠AFE=∠DFC=50°.【点睛】本题考查角平分线定义,垂线性质,三角形内角和,对顶角性质,掌握角平分线定义,垂线性质,三角形内角和,对顶角性质是解题关键.5、90°【解析】【分析】根据题意在图中标注方向角,得到有关角的度数,根据三角形内角和定理和平行线的性质解答即可.【详解】解:由题意得,∠DAB=80°,∵DA∥EB,∴∠EBA=180°﹣∠DAB=100°,又∠EBC=40°,∴∠ABC=∠EBA﹣∠EBC=60°,∵∠DAB=80°,∠DAC=50°,∴∠CAB=30°,∴∠ACB=180°﹣∠CAB﹣∠ABC=90°.【点睛】本题主要考查了平行线的性质和三角形内角和定理,准确计算是解题的关键.
相关试卷
这是一份冀教版七年级下册第九章 三角形综合与测试综合训练题,共23页。
这是一份初中第九章 三角形综合与测试课堂检测,共23页。试卷主要包含了如图,在ABC中,点D等内容,欢迎下载使用。
这是一份初中数学第九章 三角形综合与测试综合训练题,共21页。