![2021-2022学年度强化训练冀教版七年级数学下册第九章 三角形综合测评练习题(无超纲)01](http://img-preview.51jiaoxi.com/2/3/12767336/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练冀教版七年级数学下册第九章 三角形综合测评练习题(无超纲)02](http://img-preview.51jiaoxi.com/2/3/12767336/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练冀教版七年级数学下册第九章 三角形综合测评练习题(无超纲)03](http://img-preview.51jiaoxi.com/2/3/12767336/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版七年级下册第九章 三角形综合与测试随堂练习题
展开冀教版七年级数学下册第九章 三角形综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列所给的各组线段,能组成三角形的是:( )
A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,13
2、如图,在中,,,则外角的度数是( )
A.35° B.45° C.80° D.100°
3、利用直角三角板,作的高,下列作法正确的是( )
A. B.
C. D.
4、下列长度的三条线段能组成三角形的是( )
A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,7
5、以下长度的三条线段,能组成三角形的是( )
A.2,3,5 B.4,4,8 C.3,4.8,7 D.3,5,9
6、在△ABC中,∠A=∠B=∠C,则∠C=( )
A.70° B.80° C.100° D.120°
7、如图,在ABC中,点D、E分别是AC,AB的中点,且,则( )
A.12 B.6 C.3 D.2
8、小东要从下面四组木棒中选择一组制作一个三角形作品,你认为他应该选( )组.
A.2,3,5 B.3,8,4 C.2,4,7 D.3,4,5
9、如图,已知,,,则的度数为( )
A.155° B.125° C.135° D.145°
10、王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?( )
A.0根 B.1根 C.2根 D.3根
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在ABC中,已知∠A=60°,∠B=80°,则∠C是_____°.
2、在△ABC中,三边为、、,如果,,,那么的取值范围是_____.
3、边长为1的小正方形组成如图所示的6×6网格,点A,B,C,D,E,F,G,H都在格点上.其中到四边形ABCD四个顶点距离之和最小的点是_________.
4、如图,在△ABC中,D是AC延长线上一点,∠A=50°,∠B=70°,则∠BCD=__________°.
5、一个三角形的其中两个内角为,,则这个第三个内角的度数为______.
三、解答题(5小题,每小题10分,共计50分)
1、已知AMCN,点B在直线AM、CN之间,AB⊥BC于点B.
(1)如图1,请直接写出∠A和∠C之间的数量关系: .
(2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.
(3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为 .
2、如图,在△ABC中,CE平分∠ACB交AB于点E,AD是△ABC边BC上的高,AD与CE相交于点F,且∠ACB=80°,求∠AFE的度数.
3、已知是的三边长.
(1)若满足,,试判断的形状;
(2)化简:
4、请解答下列各题:
(1)阅读并回答:科学实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的角相等.如图1,一束平行光线与射向一个水平镜面后被反射,此时,.
①由条件可知:,依据是 ,,依据是 .
②反射光线与平行,依据是 .
(2)解决问题:如图2,一束光线射到平面镜上,被反射到平面镜上,又被镜反射,若射出的光线平行于,且,则 ; .
5、如图,已知:DE//BC,CD是∠ACB的平分线,∠B=80°,∠A=50°,求:∠EDC与∠BDC的度数.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据三角形三边关系定理,判断选择即可.
【详解】
∵2+11=13,
∴A不符合题意;
∵5+7=12,
∴B不符合题意;
∵5+5=10<11,
∴C不符合题意;
∵5+12=17>13,
∴D符合题意;
故选D.
【点睛】
本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.
2、C
【解析】
【分析】
根据三角形的外角的性质直接求解即可,.
【详解】
解:∵在中,,,
∴
故选C
【点睛】
本题考查了三角形的外角的性质,掌握三角形的外角的性质是解题的关键.
3、D
【解析】
【分析】
由题意直接根据高线的定义进行分析判断即可得出结论.
【详解】
解:A、B、C均不是高线.
故选:D.
【点睛】
本题考查的是作图-基本作图,熟练掌握三角形高线的定义即过一个顶点作垂直于它对边所在直线的线段,叫三角形的高线是解答此题的关键.
4、C
【解析】
【分析】
根据三角形的三边关系,逐项判断即可求解.
【详解】
解:A、因为 ,所以不能组成三角形,故本选项不符合题意;
B、因为 ,所以不能组成三角形,故本选项不符合题意;
C、因为 ,所以能组成三角形,故本选项符合题意;
D、因为 ,所以不能组成三角形,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.
5、C
【解析】
【分析】
由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可.
【详解】
解:A、2+3=5,不能组成三角形,不符合题意;
B、4+4=8,不能组成三角形,不符合题意;
C、3+4.8>7,能组成三角形,符合题意;
D、3+5<9,不能组成三角形,不符合题意.
故选:C.
【点睛】
本题主要考查对三角形三边关系的理解应用.注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可.
6、D
【解析】
【分析】
根据三角形的内角和,①,进而根据已知条件,将代入①即可求得
【详解】
解:∵在△ABC中,,∠A=∠B=∠C,
∴
解得
故选D
【点睛】
本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.
7、C
【解析】
【分析】
由于三角形的中线将三角形分成面积相等的两部分,则S△ABD=S△ABC=6,然后利用S△BDE=S△ABD求解.
【详解】
解:∵点D为AC的中点,
∴S△ABD=S△ABC=×12=6,
∵点E为AB的中点,
∴S△BDE=S△ABD=×6=3.
故选:C.
【点睛】
本题考查了三角形中线的性质,熟练掌握三角形中线的性质是解答本题的关键. 三角形的中线把三角形分成面积相同的两部分.
8、D
【解析】
【分析】
根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.
【详解】
解:根据三角形的三边关系,得
A、2+3=5,不能组成三角形,不符合题意;
B、3+4<8,不能够组成三角形,不符合题意;
C、2+4<7,不能够组成三角形,不符合题意;
D、3+4>5,不能够组成三角形,不符合题意.
故选:D.
【点睛】
本题主要考查了三角形三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.
9、B
【解析】
【分析】
根据三角形外角的性质得出,再求即可.
【详解】
解:∵,
∴,
∵,
∴,
∴;
故选:B.
【点睛】
本题考查了三角形外角的性质,解题关键是准确识图,理清角之间的关系.
10、B
【解析】
【分析】
根据三角形的稳定性即可得.
【详解】
解:要使这个木架不变形,王师傅至少还要再钉上1根木条,将这个四边形木架分成两个三角形,如图所示:
或
故选:B.
【点睛】
本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题关键.
二、填空题
1、40
【解析】
【分析】
根据三角形内角和定理计算即可.
【详解】
解:∵∠A=60°,∠B=80°,
∴∠C=180°﹣60°﹣80°=40°,
故答案为:40.
【点睛】
本题考查三角形内角和定理,三角形内角和是180°.
2、4<x<28
【解析】
【分析】
根据三角形三边的关系:两边之和大于第三边,两边之差小于第三边解答即可;
【详解】
解:由题意得:
解得:4<x<28.
故答案为:4<x<28
【点睛】
本题考查了三角形三边的关系,熟练掌握三角形三边的关系是解题的关键.
3、E
【解析】
【分析】
到四边形ABCD四个顶点距离之和最小的点是对角线的交点,连接对角线,直接判断即可.
【详解】
如图所示,连接BD、AC、GA、GB、GC、GD,
∵,,
∴到四边形ABCD四个顶点距离之和最小是,该点为对角线的交点,
根据图形可知,对角线交点为E,
故答案为:E.
【点睛】
本题考查了三角形三边关系,解题关键是通过连接辅助线,运用三角形三边关系判断点的位置.
4、120
【解析】
【分析】
根据三角形的外角性质,可得 ,即可求解.
【详解】
解:∵ 是 的外角,
∴ ,
∵∠A=50°,∠B=70°,
∴ .
故答案为:120
【点睛】
本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.
5、60°##60度
【解析】
【分析】
依题意,利用三角形内角和为:,即可;
【详解】
由题得:一个三角形的内角和为:;又已知两个其中的内角为:,;
∴ 第三个角为:;
故填:
【点睛】
本题主要考查三角形的内角和,关键在于熟练并运用基本的计算;
三、解答题
1、(1)∠A+∠C=90°;(2)∠C﹣∠A=90°,见解析;(3)45°
【解析】
【分析】
(1)过点B作BE∥AM,利用平行线的性质即可求得结论;
(2)过点B作BE∥AM,利用平行线的性质即可求得结论;
(3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论.
【详解】
(1)过点B作BE∥AM,如图,
∵BE∥AM,
∴∠A=∠ABE,
∵BE∥AM,AM∥CN,
∴BE∥CN,
∴∠C=∠CBE,
∵AB⊥BC,
∴∠ABC=90°,
∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.
故答案为:∠A+∠C=90°;
(2)∠A和∠C满足:∠C﹣∠A=90°.理由:
过点B作BE∥AM,如图,
∵BE∥AM,
∴∠A=∠ABE,
∵BE∥AM,AM∥CN,
∴BE∥CN,
∴∠C+∠CBE=180°,
∴∠CBE=180°﹣∠C,
∵AB⊥BC,
∴∠ABC=90°,
∴∠ABE+∠CBE=90°,
∴∠A+180°﹣∠C=90°,
∴∠C﹣∠A=90°;
(3)设CH与AB交于点F,如图,
∵AE平分∠MAB,
∴∠GAF=∠MAB,
∵CH平分∠NCB,
∴∠BCF=∠BCN,
∵∠B=90°,
∴∠BFC=90°﹣∠BCF,
∵∠AFG=∠BFC,
∴∠AFG=90°﹣∠BCF.
∵∠AGH=∠GAF+∠AFG,
∴∠AGH=∠MAB+90°﹣∠BCN=90°﹣(∠BCN﹣∠MAB).
由(2)知:∠BCN﹣∠MAB=90°,
∴∠AGH=90°﹣45°=45°.
故答案为:45°.
【点睛】
本题考查平行线的性质以及三角形外角的性质,由题作出辅助线是解题的关键.
2、∠AFE=50°.
【解析】
【分析】
根据CE平分∠ACB,∠ACB=80°,得出∠ECB=,根据高线性质得出∠ADC=90°,根据三角形内角和得出∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,利用对顶角性质得出∠AFE=∠DFC=50°即可.
【详解】
解:∵CE平分∠ACB,∠ACB=80°,
∴∠ECB=,
∵AD是△ABC边BC上的高,AD⊥BC,
∴∠ADC=90°,
∴∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,
∴∠AFE=∠DFC=50°.
【点睛】
本题考查角平分线定义,垂线性质,三角形内角和,对顶角性质,掌握角平分线定义,垂线性质,三角形内角和,对顶角性质是解题关键.
3、(1)是等边三角形;(2)
【解析】
【分析】
(1)由性质可得a=b,b=c,故为等边三角形.
(2)根据三角形任意两边和大于第三边,任意两边差小于第三边判定正负,再由绝对值性质去绝对值计算即可.
【详解】
(1)∵
∴且
∴
∴是等边三角形.
(2)∵是的三边长
∴b-c-a<0,a-b+c>0,a-b-c<0
原式=
=
=
【点睛】
本题考查了三角形三条边的关系以及绝对值化简,根据三角形任意两边和大于第三边,任意两边差小于第三边判定绝对值内数值正负是解题的关键.
4、(1)①两直线平行,同位角相等;等量代换.②同位角相等,两直线平行.(2)84°;90°;
【解析】
【分析】
(1)根据平行线的判定与性质逐一求解可得;
(2)根据入射角等于反射角得出∠1=∠4,∠5=∠7,求出∠6,根据平行线性质即可求出∠2,求出∠5,根据三角形内角和求出∠3即可.
【详解】
解:(1)①由条件可知:∠1=∠3,依据是:两直线平行,同位角相等;
∠2=∠4,依据是:等量代换;
②反射光线BC与EF平行,依据是:同位角相等,两直线平行;
故答案为:①两直线平行,同位角相等;等量代换.②同位角相等,两直线平行.
(2)如图,
∵∠1=42°,
∴∠4=∠1=42°,
∴∠6=180°42°42°=96°,
∵m∥n,
∴∠2+∠6=180°,
∴∠2=84°,
∴∠5=∠7=,
∴∠3=180°48°42°=90°.
故答案为:84°;90°;
【点睛】
本题考查了平行线的性质和判定,三角形的内角和定理的应用,熟练掌握平行线的判定与性质是解题的关键.
5、∠BDC=75°,∠EDC =25°
【解析】
【分析】
先根据三角形内角和定理求出∠ACB =50°,再由角平分线的定义求出,则由三角形内角和定理可求出∠BDC=180°-∠B-∠BCD=75°,再由平行线的性质即可得到∠EDC=∠BCD=25°.
【详解】
解:∵∠A=50°,∠B=80°,
∴∠ACB=180°-∠A-∠B=50°,
∵CD平分∠ACB,
∴,
∴∠BDC=180°-∠B-∠BCD=75°,
∵DE∥BC,
∴∠EDC=∠BCD=25°.
【点睛】
本题主要考查了三角形内角和定理,角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.
初中数学第九章 三角形综合与测试课时训练: 这是一份初中数学第九章 三角形综合与测试课时训练,共24页。
初中数学冀教版七年级下册第九章 三角形综合与测试课后作业题: 这是一份初中数学冀教版七年级下册第九章 三角形综合与测试课后作业题,共21页。试卷主要包含了如图,直线l1l2,被直线l3等内容,欢迎下载使用。
初中冀教版第九章 三角形综合与测试当堂达标检测题: 这是一份初中冀教版第九章 三角形综合与测试当堂达标检测题,共22页。试卷主要包含了如图,在ABC中,点D,如图,,,则的度数是等内容,欢迎下载使用。