冀教版七年级下册第九章 三角形综合与测试一课一练
展开
这是一份冀教版七年级下册第九章 三角形综合与测试一课一练,共20页。
冀教版七年级数学下册第九章 三角形课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将△ABC沿着DE减去一个角后得到四边形BCED,若∠BDE和∠DEC的平分线交于点F,∠DFE=α,则∠A的度数是( )A.180°﹣α B.180°﹣2α C.360°﹣α D.360°﹣2α2、下列长度的三条线段能组成三角形的是( )A.3,4,8 B.5,6,11 C.5,6,10 D.4,5,93、如图,∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,则∠BDC的大小为( )A. B. C. D.4、如图,在ABC中,∠A=55°,∠B=45°,那么∠ACD的度数为( )A.110 B.100 C.55 D.455、如图,已知为的外角,,,那么的度数是( )A.30° B.40° C.50° D.60°6、人字梯中间一般会设计一“拉杆”,这样做的道理是( )A.两点之间线段最短 B.三角形的稳定性C.两点确定一条直线 D.垂线段最短7、如图, AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( )A.6 B.5 C.4 D.38、下列各组数中,不能作为一个三角形三边长的是( )A.4,4,4 B.2,7,9 C.3,4,5 D.5,7,99、如图,在中,,,将沿直线翻折,点落在点的位置,则的度数是( ) A.30° B.45° C.60° D.75°10、如图,在ABC中,点D、E分别是AC,AB的中点,且,则( )A.12 B.6 C.3 D.2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在中,,,,那么是______三角形.(填“锐角”、“钝角”或“直角” )2、如图,在△ABC中,BA=BC,D为△ABC内一点,将△BDC绕点B逆时针旋转至△BEA处,延长AE,CD交于点F,若∠ABC=70°,则∠AFC的度数为 _____.3、古希腊七贤之一,著名哲学家泰勒斯(,公元前6世纪)最早从拼图实践中发现了“三角形内角和等于”,但这种发现完全是经验性的,泰勒斯并没有给出严格的证明.之后古希腊数学家毕达哥拉斯、欧几里得、普罗科拉斯等相继给出了基于平行线性质的不同的证明.其中欧几里得利用辅助平行线和延长线,通过一组同位角和内错角证明了该定理.请同学们帮助欧几里得将证明过程补充完整.已知:如图,在中,试说明:.解:延长线段至点,并过点作.因为(已作),所以( ),( ).因为( ),所以 ( ).4、如图,在面积为48的等腰中,,,P是BC边上的动点,点P关于直线AB、AC的对称点外别为M、N,则线段MN的最大值为______.5、定义:当三角形中一个内角α是另一个内角的两倍时,我们称此三角形为“倍角三角形”,其中α称为“倍角”,如果一个“倍角三角形”的一个内角为99°,那么倍角α的度数是_____.三、解答题(5小题,每小题10分,共计50分)1、如图,AD是∠BAC的平分线,CE是△ADC边AD上的高,若∠BAC=80°,∠ECD=25°,求∠ACB的度数.2、如图,中,是角平分线,且,,求的度数.3、如图,已知:DE//BC,CD是∠ACB的平分线,∠B=80°,∠A=50°,求:∠EDC与∠BDC的度数.4、在中,平分平分,求的度数.5、如图,已知△ABC的高AD和角平分线AE,∠B=26°,∠ACD=56°,求(1)∠CAD的度数;(2)∠AED的度数. -参考答案-一、单选题1、B【解析】【分析】根据∠DFE=α得到∠FDE+∠FED,再根据角平分线的性质求出∠BDE+∠CED=360°-2α,利用外角的性质得到∠ADE+∠AED=2α,最后根据三角形内角和求出结果.【详解】解:∵∠DFE=α,∴∠FDE+∠FED=180°-α,由角平分线的定义可知:∠BDF=∠FDE,∠CEF=∠FED,∴∠BDE+∠CED=2∠FDE+2∠FED=360°-2α,∴∠ADE+∠AED=180°-∠BDE +180°-∠CED=2α,∴∠A=180°-(∠ADE+∠AED)=180°-2α,故选B.【点睛】本题考查了角平分线的定义,三角形内角和,三角形外角的性质,解题的关键是利用角平分线得到相等的角,根据内角和进行计算.2、C【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,得,A、3+4=7<8,不能组成三角形,该选项不符合题意;B、5+6=11,不能够组成三角形,该选项不符合题意;C、5+6=11>10,能够组成三角形,该选项符合题意;D、4+5=9,不能够组成三角形,该选项不符合题意.故选:C.【点睛】本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3、A【解析】【分析】根据题意设,根据三角形内角和公式定理,进而表示出,进而根据三角形内角和定理根据即可求解【详解】解:∵∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,设,∴即故选A【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.4、B【解析】【分析】根据三角形的外角的性质计算即可.【详解】解:由三角形的外角的性质可知,∠ACD=∠A+∠B=100°,故选:B.【点睛】本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解答本题的关键.三角形的一个外角等于与它不相邻的两个内角的和,三角形的一个外角大于任何一个与它不相邻的内角.5、B【解析】【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD−∠B=60°−20°=40°,故选:B.【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.6、B【解析】【分析】首先要考虑梯子中间设置“拉杆”的原因,是为了让梯子更加稳固,而更加稳固的原因是“拉杆”与梯子两边形成了三角形.【详解】人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加梯子的稳定性.故选:B.【点睛】本题考查三角形的稳定性,善于从生活中发现数学原理是解决本题的关键.7、D【解析】【分析】过D作DF⊥AC于F,根据角平分线性质求出DF=DE=2,根据S△ADB+S△ADC=7和三角形面积公式求出即可.【详解】解:过D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,∴DE=DF=2,∵S△ABC=7,∴S△ADB+S△ADC=7,∴×AB×DE+×AC×DF=7,∴×4×2+×AC×2=7,解得:AC=3.故选D .【点睛】本题考查了角平分线的性质,三角形面积公式的应用,能正确作出辅助线是解此题的关键,注意:角平分线上的点到角两边的距离相等.8、B【解析】【分析】根据三角形两边之和大于第三边,两边之差小于第三边即可求解.【详解】解:选项A:4,4,4可以构成等边三角形,故选项A正确;选项B:2+7=9,两边之和等于第三边,不能构成三角形,故选项B错误;选项C:3+4>5,这三边可以构成三角形,故选项C正确;选项D:任意两边之和大于第三边,两边之差小于第三边,可以构成三角形,故选项D正确;故选:B.【点睛】本题考查了构成三角形的三边的条件:两边之和大于第三边,两边之差小于第三边,由此即可求解.9、C【解析】【分析】设交于点,是射线上的一点,设,根据三角形的外角的性质可得,进而根据平角的定义即可求得,即可求得.【详解】如图,设交于点,是射线上的一点,折叠,设即故选C【点睛】本题考查了折叠的性质,三角形的外角的性质,掌握三角形外角的性质是解题的关键.10、C【解析】【分析】由于三角形的中线将三角形分成面积相等的两部分,则S△ABD=S△ABC=6,然后利用S△BDE=S△ABD求解.【详解】解:∵点D为AC的中点,∴S△ABD=S△ABC=×12=6,∵点E为AB的中点,∴S△BDE=S△ABD=×6=3.故选:C.【点睛】本题考查了三角形中线的性质,熟练掌握三角形中线的性质是解答本题的关键. 三角形的中线把三角形分成面积相同的两部分.二、填空题1、钝角【解析】【分析】根据三角形按角的分类可得结论.【详解】解:在中,,,,,是钝角三角形,故答案为:钝角.【点睛】本题考查三角形的分类,熟知三角形按角分为锐角三角形、直角三角形和钝角三角形是解题关键.2、70°或70度【解析】【分析】先根据旋转的性质得到∠EBD=∠ABC=70°,∠BDC=∠BEA,然后根据邻补角的性质和三角形内角和定理即可得到∠AFC=∠EBD=70°.【详解】解: ∵△BDC绕点B逆时针旋转得到△BEA,∴∠EBD=∠ABC=70°,∠BDC=∠BEA,∴∠FEG=∠BDG,∵∠EGF=∠DGB,∴∠AFC=∠EBD=70°.故答案为:70°.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.3、两直线平行,内错角相等;两直线平行,同位角相等;平角的定义;A;B;等量代换;见解析【解析】【分析】根据平行线的性质以及平角的定义可解决问题.【解答】解:延长线段至点,并过点作.因为(已作),所以(两直线平行,内错角相等),(两直线平行,同位角相等).因为(平角的定义),所以(等量代换).故答案为:两直线平行,内错角相等;两直线平行,同位角相等;平角的定义;;;等量代换.【点评】本题考查三角形内角和定理的推理过程,掌握平行线的性质是解题关键.4、19.2【解析】【分析】点P关于直线AB、AC的对称点分别为M、N,根据三角形三边关系可得,当点P与点B或点C重合时,P、M、N三点共线,MN最长,由轴对称可得,,再由三角形等面积法即可确定MN长度.【详解】解:如图所示:点P关于直线AB、AC的对称点分别为M、N,由图可得:,当点P与点B或点C重合时,如图所示,MN交AC于点F,此时P、M、N三点共线, MN最长,∴,,∵等腰面积为48,,∴,,∴,故答案为:.【点睛】题目主要考查对称点的性质及三角形三边关系,三角形等面积法等,理解题意,根据图形得出三点共线时线段最长是解题关键.5、或【解析】【分析】根据新定义分三种情况:①当99°的内角是另一个角的两倍时,直接可得α的度数;②当一个内角α是的两倍时,不符合三角形的内角和关系,舍去;③当三角形中另两个角是“倍角”关系时,列方程得到,求解即可.【详解】解:分三种情况:①当99°的内角是另一个角的两倍时,倍角α的度数是;②当一个内角α是的两倍时,则,不符合三角形的内角和关系,故舍去;③当三角形中另两个角是“倍角”关系时,得到,得α=,故答案为:或.【点睛】此题考查了三角形的内角和定理,新定义计算,一元一次方程,正确理解新定义并列式计算是解题的关键.三、解答题1、75°【解析】【分析】根据角平分线的定义求出∠DAC的度数,所以EDCA可求,进而求出∠ACB的度数.【详解】解:∵AD是∠BAC的平分线,∠BAC=80°,∴∠DAC=40°,∵CE是△ADC边AD上的高,∴∠ACE=90°﹣40°=50°,∵∠ECD=25°∴∠ACB=50°+25°=75°.【点睛】本题主要考查了三角形的内角和定理.解题的关键是掌握三角形的内角和定理以及角平分线的性质.2、25°【解析】【分析】根据三角形内角和求出∠CAB,再根据角平分线的性质求出∠BAE即可.【详解】解:∵∠B=52°,∠C=78°,∴∠BAC=180°-52°-78°=50°,∵AE平分∠BAC,∴∠BAE=∠BAC=×50°=25°.【点睛】本题考查了角的平分线的性质、三角形的内角和定理,熟记三角形内角和为180°是解本题的关键.3、∠BDC=75°,∠EDC =25°【解析】【分析】先根据三角形内角和定理求出∠ACB =50°,再由角平分线的定义求出,则由三角形内角和定理可求出∠BDC=180°-∠B-∠BCD=75°,再由平行线的性质即可得到∠EDC=∠BCD=25°.【详解】解:∵∠A=50°,∠B=80°,∴∠ACB=180°-∠A-∠B=50°,∵CD平分∠ACB,∴,∴∠BDC=180°-∠B-∠BCD=75°,∵DE∥BC,∴∠EDC=∠BCD=25°.【点睛】本题主要考查了三角形内角和定理,角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.4、【解析】【分析】根据外角的性质,求得,根据角平分线的定义可得,根据三角形的内角和求得,角平分线的性质可得,根据三角形内角和即可求解.【详解】解:∵,∴,∵平分∴,由三角形内角和的性质可得,,∵平分∴,由三角形内角和的性质可得,.【点睛】此题考查了三角形内角和的性质、外角的性质以及角平分线的定义,解题的关键是掌握并灵活运用相关性质进行求解.5、 (1)34°(2)41°【解析】【分析】(1)根据三角形内角和可得的度数;(2)先根据三角形外角性质计算出,再根据角平分线定义得到,接着再利用三角形外角性质得到.(1)解:在中,,,;(2)解:在中,,,平分,,.【点睛】本题考查角形内角和定理,解题的关键是掌握三角形内角和是,合理使用三角形外角性质计算角度.
相关试卷
这是一份初中冀教版第九章 三角形综合与测试精练,共21页。试卷主要包含了如图,在中,若点使得,则是的等内容,欢迎下载使用。
这是一份数学七年级下册第九章 三角形综合与测试练习,共20页。试卷主要包含了如图,为估计池塘岸边A等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试达标测试,共23页。试卷主要包含了如图,图形中的的值是等内容,欢迎下载使用。