2020-2021学年第九章 三角形综合与测试达标测试
展开
这是一份2020-2021学年第九章 三角形综合与测试达标测试,共18页。试卷主要包含了如图,图形中的的值是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,将一个含有30°角的直角三角板放置在两条平行线a,b上,若,则的度数为( )
A.85°B.75°C.55°D.95°
2、下列图形中,不具有稳定性的是( )
A.B.
C.D.
3、将一副直角三角板按如图所示的位置摆放,若含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则的度数是( )
A.45°B.60°C.75°D.85°
4、如图,图形中的的值是( )
A.50B.60C.70D.80
5、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是( )
A.两点确定一条直线
B.两点之间,线段最短
C.三角形具有稳定性
D.三角形的任意两边之和大于第三边
6、已知三角形的两边长分别为和,则下列长度的四条线段中能作为第三边的是( )
A.B.C.D.
7、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是( )
A.3cmB.4cmC.7cmD.10cm
8、如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=32°,∠B=30°,则∠ACE的大小是( )
A.63°B.58°C.54°D.56°
9、如图,钝角中,为钝角,为边上的高,为的平分线,则与、之间有一种等量关系始终不变,下面有一个规律可以表示这种关系,你发现的是( )
A.B.
C.D.
10、如图,在中,AD、AE分别是边BC上的中线与高,,CD的长为5,则的面积为( )
A.8B.10C.20D.40
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个三角形的三个内角之比为1:2:3,这个三角形最小的内角的度数是 _____.
2、如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,设∠A=.则∠A1=_______(用含的式子表示).
3、已知a,b,c是△ABC的三边,化简:|a+b-c|+|b-a-c|=________.
4、在ABC中,已知∠A=60°,∠B=80°,则∠C是_____°.
5、将△ABC沿着DE翻折,使点A落到点A'处,A'D、A'E分别与BC交于M、N两点,且DE∥BC.已知∠A'NM=20°,则∠NEC=_____度.
三、解答题(5小题,每小题10分,共计50分)
1、在△ABC中,∠A-∠B=30°,∠C=4∠B,求∠A、∠B、∠C的度数
2、如图,在ABC中,AC=6,BC=8,AD⊥BC于D,AD=5,BE⊥AC于E,求BE的长.
3、如图,在中,为的高,为的角平分线,交于点G,,,求的大小.
4、如图,FA⊥EC,垂足为E,∠F=40°,∠C=20°,求∠FBC的度数.
5、如图,在△ABC中,∠ABC=30°,∠C=80°,AD是△ABC的角平分线,BE是△ABD中AD边上的高,求∠ABE的度数.
-参考答案-
一、单选题
1、A
【解析】
【分析】
由平行线的性质,得,然后由三角形外角的性质,即可求出答案.
【详解】
解:由题意,如图,
∵,
∴,
∵,
∴;
故选:A
【点睛】
本题考查了三角形的外角性质,平行线的性质,解题的关键是掌握所学的知识,正确求出.
2、B
【解析】
【分析】
由三角形的稳定性的性质判定即可.
【详解】
A选项为三角形,故具有稳定性,不符合题意,故错误;
B选项为四边形,非三角形结构,故不具有稳定性,符合题意,故正确;
C选项为三个三角形组成的图形,属于三角形结构,故具有稳定性,不符合题意,故错误;
D选项为两个三角形组成的图形,属于三角形结构,故具有稳定性,不符合题意,故错误.
故选B.
【点睛】
本题考查了三角形的稳定性,如果三角形的三条边固定,那么三角形的形状和大小就完全确定了,三角形的这个特征,叫做三角形的稳定性注意①要看图形是否具有稳定性,关键在于它的结构是不是三角形结构②除了三角形外,其他图形都不具备稳定性,因此在生产建设中,三角形的应用非常广泛.
3、C
【解析】
【分析】
先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB可得答案.
【详解】
解:如图:
∵∠ACD=90°、∠F=45°,
∴∠CGF=∠DGB=45°,
∴∠α=∠D+∠DGB=30°+45°=75°.
故选C.
【点睛】
本题主要考查三角形的外角的性质,掌握三角形的内角和定理和三角形外角的性质是解答本题的关键.
4、B
【解析】
【分析】
根据三角形外角的性质:三角形一个外角的度数等于与其不相邻的两个内角的度数和进行求解即可.
【详解】
解:由题意得:
∴,
∴,
故选B.
【点睛】
本题主要考查了三角形外角的性质,解一元一次方程,熟知三角形外角的性质是解题的关键.
5、C
【解析】
【分析】
根据三角形具有稳定性进行求解即可.
【详解】
解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,
故选C.
【点睛】
本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.
6、C
【解析】
【分析】
根据三角形的三边关系可得,再解不等式可得答案.
【详解】
解:设三角形的第三边为,由题意可得:
,
即,
故选:C.
【点睛】
本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.
7、C
【解析】
【分析】
设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.
【详解】
解:设三角形的第三边是xcm.则
7-3<x<7+3.
即4<x<10,
四个选项中,只有选项C符合题意,
故选:C.
【点睛】
本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.
8、C
【解析】
【分析】
先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.
【详解】
解:∵∠A=33°,∠B=30°,
∴∠ACD=∠A+∠B=33°+30°=63°,
∵△ABC绕点C按逆时针方向旋转至△DEC,
∴△ABC≌△DEC,
∴∠ACB=∠DCE,
∴∠BCE=∠ACD,
∴∠BCE=63°,
∴∠ACE=180°-∠ACD-∠BCE=180°-63°-63°=54°.
故选:C.
【点睛】
本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DEC.
9、B
【解析】
【分析】
根据三角形内角和定理、角平分线的性质、三角形外角的性质依次推理即可得出结论.
【详解】
解:由三角形内角和知∠BAC=180°-∠2-∠1,
∵AE为∠BAC的平分线,
∴∠BAE=∠BAC=(180°-∠2-∠1).
∵AD为BC边上的高,
∴∠ADC=90°=∠DAB+∠ABD.
又∵∠ABD=180°-∠2,
∴∠DAB=90°-(180°-∠2)=∠2-90°,
∴∠EAD=∠DAB+∠BAE=∠2-90°+(180°-∠2-∠1)=(∠2-∠1).
故选:B
【点睛】
本题主要考查了三角形的内角和定理,角平分线的定义、三角形外角性质及三角形的高的定义,解答的关键是找到已知角和所求角之间的联系.
10、C
【解析】
【分析】
根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可.
【详解】
解:∵AD是边BC上的中线,CD的长为5,
∴CB=2CD=10,
的面积为,
故选:C.
【点睛】
本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长.
二、填空题
1、30°##30度
【解析】
【分析】
设三角形的三个内角分别为x,2x,3x,再根据三角形内角和定理求出x的值,进而可得出结论.
【详解】
解:∵三角形三个内角的比为1:2:3,
∴设三角形的三个内角分别为x,2x,3x,
∴x+2x+3x=180°,解得x=30°.
∴这个三角形最小的内角的度数是30°.
故答案为:30°.
【点睛】
本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.
2、
【解析】
【分析】
根据角平分线的定义、三角形的外角的性质计算即可.
【详解】
∵∠ABC与∠ACD的平分线交于A1点,
∴∠A1BC=∠ABC,∠A1CD=∠ACD,
∵∠A=∠ACD-∠ABC=
∴∠A1=∠A1CD-∠A1BC=(∠ACD-∠ABC)=∠A=,
故答案为:.
【点睛】
本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.
3、
【解析】
【分析】
首先利用三角形的三边关系得出,然后根据求绝对值的法则进行化简即可.
【详解】
解:∵是的三条边,
∴,
∴=.
故答案为:.
【点睛】
熟悉三角形的三边关系和求绝对值的法则,是解题的关键,注意,去绝对值后,要先添加括号,再去括号,这样不容易出错.
|a+b-c|+|b-a-c|
4、40
【解析】
【分析】
根据三角形内角和定理计算即可.
【详解】
解:∵∠A=60°,∠B=80°,
∴∠C=180°﹣60°﹣80°=40°,
故答案为:40.
【点睛】
本题考查三角形内角和定理,三角形内角和是180°.
5、140
【解析】
【分析】
根据对顶角相等,可得∠CNE=20°,再由DE∥BC,可得∠DEN=∠CNE=20°,然后根据折叠的性质可得∠AED=∠DEN=20°,即可求解.
【详解】
解:∵∠A′NM=20°,∠CNE=∠A′NM,
∴∠CNE=20°,
∵DE∥BC,
∴∠DEN=∠CNE=20°,
由翻折性质得:∠AED=∠DEN=20°,
∴∠AEN=40°,
∴∠NEC=180°﹣∠AEN=180°﹣40°=140°.
故答案为:140
【点睛】
本题主要考查了折叠的性质,平行线的性质,熟练掌握图形折叠前后对应角相等,两直线平行,内错角相等是解题的关键.
三、解答题
1、,,
【解析】
【分析】
根据三角形内角和定理,以及已知条件列三元一次方程组解方程求解即可
【详解】
在△ABC中,,∠A-∠B=30°,∠C=4∠B,
①-②得④
将③代入④解得
,
,,
【点睛】
本题考查了三角形内角和定理,解三元一次方程组,正确的计算是解题的关键.
2、.
【解析】
【分析】
根据三角形面积公式计算即可.
【详解】
解:
.
【点睛】
本题考查三角形面积的计算,利用等积法是解题关键.
3、.
【解析】
【分析】
先由直角三角形两锐角互余得到∠B=40°,在三角形△ABC 中,由内角和定理求得∠BAE=30°,由角平分线定义得出 ∠BAC=60°,即可求得∠ACD .
【详解】
解:为的高,
.
.
在中,.
为的角平分线,
.
.
【点睛】
此题考查三角形内角和定理、角平分线定义和直角三角形两锐角互余等,掌握定义和定理是解答此题的关键.
4、110°
【解析】
【分析】
根据三角形的内角和可得∠A的度数,再利用外角的性质可得∠FBC的度数.
【详解】
解:在△AEC 中,FA⊥EC,∴∠AEC=90°,
∴∠A=90°-∠C=70°.
∵∠FBC是△ABF的一个外角,
∴∠FBC=∠A+∠F=70°+40°=110°.
【点睛】
本题考查三角形的内角和与外角的性质,求出∠A的度数是解题关键.
5、55°
【解析】
【分析】
先根据三角形内角和定理及角平分线的性质求出∠BAD度数,由AE⊥BE可求出∠AEB=90°,再由三角形的内角和定理即可解答.
【详解】
解:∵∠ABC=30°,∠C=80°,
∴∠BAC=180°-30°-80°=70°,
∵AD是∠BAC的平分线,
∴∠BAD=×70°=35°,
∵AE⊥BE,
∴∠AEB=90°,
∴∠ABE=180°-∠AEB-∠BAE=180°-90°-35°=55°.
【点睛】
本题考查的是角平分线的定义,高的定义及三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试课后练习题,共21页。试卷主要包含了如图,是的中线,,则的长为,若三角形的两边a,若一个三角形的三个外角之比为3,如图,等内容,欢迎下载使用。
这是一份数学七年级下册第九章 三角形综合与测试课后作业题,共24页。试卷主要包含了如图,点B,下列叙述正确的是,三角形的外角和是等内容,欢迎下载使用。
这是一份初中数学第九章 三角形综合与测试精练,共21页。试卷主要包含了如图,已知△ABC中,BD,如图,直线l1等内容,欢迎下载使用。