![2022年精品解析冀教版七年级数学下册第九章 三角形综合测试试题(含解析)第1页](http://img-preview.51jiaoxi.com/2/3/12767234/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析冀教版七年级数学下册第九章 三角形综合测试试题(含解析)第2页](http://img-preview.51jiaoxi.com/2/3/12767234/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析冀教版七年级数学下册第九章 三角形综合测试试题(含解析)第3页](http://img-preview.51jiaoxi.com/2/3/12767234/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学七年级下册第九章 三角形综合与测试达标测试
展开
这是一份数学七年级下册第九章 三角形综合与测试达标测试,共23页。试卷主要包含了下列各图中,有△ABC的高的是,如图,在ABC中,点D等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一扇窗户打开后,用窗钩AB可将其固定( )A.三角形的稳定性B.两点之间线段最短C.四边形的不稳定性D.三角形两边之和大于第三边2、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.证法1:如图,∵∠A=70°,∠B=63°,且∠ACD=133°(量角器测量所得)又∵133°=70°+63°(计算所得)∴∠ACD=∠A+∠B(等量代换).证法2:如图,∵∠A+∠B+∠ACB=180°(三角形内角和定理),又∵∠ACD+∠ACB=180°(平角定义),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).∴∠ACD=∠A+∠B(等式性质).下列说法正确的是( )A.证法1用特殊到一般法证明了该定理B.证法1只要测量够100个三角形进行验证,就能证明该定理C.证法2还需证明其他形状的三角形,该定理的证明才完整D.证法2用严谨的推理证明了该定理3、BP是∠ABC的平分线,CP是∠ACB的邻补角的平分线,∠ABP=20°,∠ACP=50°,则∠P=( )A.30° B.40° C.50° D.60°4、下列各图中,有△ABC的高的是( )A. B.C. D.5、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是( )A.50° B.60° C.40° D.30°6、如图,BD是的角平分线,,交AB于点E.若,,则的度数是( )A.10° B.20° C.30° D.50°7、小明把一副含有45°,30°角的直角三角板如图摆放其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠a+∠β等于( )A.180° B.210° C.360° D.270°8、如图,∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,则∠BDC的大小为( )A. B. C. D.9、如图,在ABC中,点D、E分别是AC,AB的中点,且,则( )A.12 B.6 C.3 D.210、如图,在△ABC中,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,∠D=15°,则∠A的度数为( )A.30° B.45° C.20° D.22.5°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,为△ABC的中线,为△的中线,为△的中线,……按此规律,为△的中线.若△ABC的面积为8,则△的面积为_______________.2、如图,在△ABC中,点D在CB的延长线上,∠A=60°,∠ABD=110°,则∠C等于___.3、一个三角形的三个内角之比为1:2:3,这个三角形最小的内角的度数是 _____.4、如图:中,,,于D,CE平分,于F,则______°.5、如图,在面积为48的等腰中,,,P是BC边上的动点,点P关于直线AB、AC的对称点外别为M、N,则线段MN的最大值为______.三、解答题(5小题,每小题10分,共计50分)1、如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.(1)若∠B=35°,∠E=25°,求∠BAC的度数;(2)证明:∠BAC=∠B+2∠E.2、如图是A、B、C三岛的平面图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向.从C岛看A、B岛的视角∠ACB为多少?3、在△ABC中,∠B=∠A+30°,∠C=40°,求∠A和∠B的度数.4、如图,在三角形ABC中,∠ABC与∠ACB的角平分线交于点P(1)当∠A=60°时,求∠BPC的的度数;(提示:三角形内角和180°);(2)当∠A=α°时,直接写出∠A与∠BPC的数量关系.5、请解答下列各题:(1)阅读并回答:科学实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的角相等.如图1,一束平行光线与射向一个水平镜面后被反射,此时,.①由条件可知:,依据是 ,,依据是 .②反射光线与平行,依据是 .(2)解决问题:如图2,一束光线射到平面镜上,被反射到平面镜上,又被镜反射,若射出的光线平行于,且,则 ; . -参考答案-一、单选题1、A【解析】【分析】由三角形的稳定性即可得出答案.【详解】一扇窗户打开后,用窗钩AB可将其固定,故选:A.【点睛】本题考查了三角形的稳定性,加上窗钩AB构成了△AOB,而三角形具有稳定性是解题的关键.2、D【解析】【分析】利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.【详解】解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,证法2才是用严谨的推理证明了该定理,故A不符合题意,C不符合题意,D符合题意,证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;故选D【点睛】本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.3、A【解析】【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.【详解】∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM−∠CBP=50°−20°=30°,故选:A.【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.4、B【解析】【分析】利用三角形的高的定义可得答案.【详解】解:∵选项B是过顶点C作的AB边上的高,∴有△ABC的高的是选项B,故选:B.【点睛】此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.5、A【解析】【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将△OAB绕点O逆时针旋转80°得到△OCD, ∠A的度数为110°,∠D的度数为40°, 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.6、B【解析】【分析】由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解.【详解】解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD,∴∠ABD=∠BDC−∠A=50°−30°=20°,∵BD是△ABC的角平分线,∴∠DBC=∠ABD=20°,∵DE∥BC,∴∠EDB=∠DBC=20°,故选:B.【点睛】本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.7、B【解析】【分析】已知,得到,根据外角性质,得到,,再将两式相加,等量代换,即可得解;【详解】解:如图所示,∵,∴,∵,,∴,∵,,∴,∵,,∴;故选D.【点睛】本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键.8、A【解析】【分析】根据题意设,根据三角形内角和公式定理,进而表示出,进而根据三角形内角和定理根据即可求解【详解】解:∵∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,设,∴即故选A【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.9、C【解析】【分析】由于三角形的中线将三角形分成面积相等的两部分,则S△ABD=S△ABC=6,然后利用S△BDE=S△ABD求解.【详解】解:∵点D为AC的中点,∴S△ABD=S△ABC=×12=6,∵点E为AB的中点,∴S△BDE=S△ABD=×6=3.故选:C.【点睛】本题考查了三角形中线的性质,熟练掌握三角形中线的性质是解答本题的关键. 三角形的中线把三角形分成面积相同的两部分.10、A【解析】【分析】由三角形的外角的性质可得再结合角平分线的性质进行等量代换可得从而可得答案.【详解】解: ∠ABC与∠ACE的平分线相交于点D, 故选A【点睛】本题考查的是三角形的角平分线的性质,三角形的外角的性质,熟练的利用三角形的外角的性质结合等量代换得到是解本题的关键.二、填空题1、【解析】【分析】根据三角形的中线性质,可得△的面积=,△的面积=,……,进而即可得到答案.【详解】由题意得:△的面积=,△的面积=,……,△的面积==.故答案是:.【点睛】本题主要考查三角形的中线的性质,掌握三角形的中线把三角形的面积平分,是解题的关键.2、50°【解析】【分析】首先根据平角的概念求出的度数,然后根据三角形内角和定理即可求出的度数.【详解】解:∵∠ABD=110°,∴,∴故答案为:50°.【点睛】此题考查了平角的概念,三角形三角形内角和定理,解题的关键是熟练掌握平角的概念,三角形三角形内角和定理.3、30°##30度【解析】【分析】设三角形的三个内角分别为x,2x,3x,再根据三角形内角和定理求出x的值,进而可得出结论.【详解】解:∵三角形三个内角的比为1:2:3,∴设三角形的三个内角分别为x,2x,3x,∴x+2x+3x=180°,解得x=30°.∴这个三角形最小的内角的度数是30°.故答案为:30°.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.4、805、19.2【解析】【分析】点P关于直线AB、AC的对称点分别为M、N,根据三角形三边关系可得,当点P与点B或点C重合时,P、M、N三点共线,MN最长,由轴对称可得,,再由三角形等面积法即可确定MN长度.【详解】解:如图所示:点P关于直线AB、AC的对称点分别为M、N,由图可得:,当点P与点B或点C重合时,如图所示,MN交AC于点F,此时P、M、N三点共线, MN最长,∴,,∵等腰面积为48,,∴,,∴,故答案为:.【点睛】题目主要考查对称点的性质及三角形三边关系,三角形等面积法等,理解题意,根据图形得出三点共线时线段最长是解题关键.三、解答题1、 (1)∠BAC=85°;(2)见解析【解析】【分析】(1)根据三角形的外角性质求出∠ECD,根据角平分线的定义求出∠ACE,再根据三角形的外角性质计算,得到答案;(2)根据角平分线的定义、三角形的外角性质计算,证明结论.(1)解:∵∠B=35°,∠E=25°,∴∠ECD=∠B+∠E=60°.∵CE平分∠ACD,∴∠ACE=∠ECD=60°,∴∠BAC=∠ACE+∠E=85°;(2)证明:∵CE平分∠ACD,∴∠ECD=∠ACE.∵∠BAC=∠E+∠ACE,∴∠BAC=∠E+∠ECD,∵∠ECD=∠B+∠E,∴∠BAC=∠E+∠B+∠E,∴∠BAC=∠B+2∠E.【点睛】本题考查的是三角形的外角性质、三角形内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.2、90°【解析】【分析】根据题意在图中标注方向角,得到有关角的度数,根据三角形内角和定理和平行线的性质解答即可.【详解】解:由题意得,∠DAB=80°,∵DA∥EB,∴∠EBA=180°﹣∠DAB=100°,又∠EBC=40°,∴∠ABC=∠EBA﹣∠EBC=60°,∵∠DAB=80°,∠DAC=50°,∴∠CAB=30°,∴∠ACB=180°﹣∠CAB﹣∠ABC=90°.【点睛】本题主要考查了平行线的性质和三角形内角和定理,准确计算是解题的关键.3、,【解析】【分析】利用已知结合三角形内角和定理即可求解.【详解】解:∵,∴.∵,∴,∴,∴.【点睛】本题考查三角形内角和定理,正确得出是解题关键.4、 (1)120°(2)∠BPC=【解析】【分析】(1)根据BP是∠ABC的平分线,得出∠PBC=.根据CP是∠ACB的平分线,∠PCB=,根据∠A=60°,得出=120°,求∠PBC+∠PCB==60°即可;(2)根据BP是∠ABC的平分线,得出∠PBC=.根据CP是∠ACB的平分线,得出∠PCB=,根据∠A=α°,得出=180°-α°,可求∠PBC+∠PCB=即可.(1)解:如图,∵BP是∠ABC的平分线,∴∠PBC=.(角平分线定义)∵CP是∠ACB的平分线,∴∠PCB=,∴∠PBC+∠PCB= ,∵∠A=60°,∴=120°,∴∠PBC+∠PCB==60°,∴∠BPC=180°-∠PBC-∠PCB=180°-(∠PBC+∠PCB)=180°-60°=120°.(2)如图,∵BP是∠ABC的平分线,∴∠PBC=.(角平分线定义)∵CP是∠ACB的平分线,∴∠PCB=,∴∠PBC+∠PCB=,∵∠A=α°,∴=180°-α°,∴∠PBC+∠PCB=,∴∠BPC=180°-∠PBC-∠PCB=180°-(∠PBC+∠PCB)=180°-90°=90°.∴∠BPC=.【点睛】本题考查角平分线定义,三角形内角和,掌握角平分线定义,三角形内角和是解题关键.5、(1)①两直线平行,同位角相等;等量代换.②同位角相等,两直线平行.(2)84°;90°;【解析】【分析】(1)根据平行线的判定与性质逐一求解可得;(2)根据入射角等于反射角得出∠1=∠4,∠5=∠7,求出∠6,根据平行线性质即可求出∠2,求出∠5,根据三角形内角和求出∠3即可.【详解】解:(1)①由条件可知:∠1=∠3,依据是:两直线平行,同位角相等;∠2=∠4,依据是:等量代换;②反射光线BC与EF平行,依据是:同位角相等,两直线平行;故答案为:①两直线平行,同位角相等;等量代换.②同位角相等,两直线平行.(2)如图,∵∠1=42°,∴∠4=∠1=42°,∴∠6=180°42°42°=96°,∵m∥n,∴∠2+∠6=180°,∴∠2=84°,∴∠5=∠7=,∴∠3=180°48°42°=90°.故答案为:84°;90°;【点睛】本题考查了平行线的性质和判定,三角形的内角和定理的应用,熟练掌握平行线的判定与性质是解题的关键.
相关试卷
这是一份数学七年级下册第九章 三角形综合与测试同步达标检测题,共24页。试卷主要包含了如图,在中,AD,若一个三角形的三个外角之比为3等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试习题,共20页。试卷主要包含了定理,如图,在中,若点使得,则是的等内容,欢迎下载使用。
这是一份冀教版七年级下册第九章 三角形综合与测试课后测评,共24页。试卷主要包含了下列图形中,不具有稳定性的是,如图,在中,若点使得,则是的等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)