![精品试卷冀教版七年级数学下册第九章 三角形综合测试试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12766970/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷冀教版七年级数学下册第九章 三角形综合测试试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12766970/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷冀教版七年级数学下册第九章 三角形综合测试试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12766970/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中第九章 三角形综合与测试综合训练题
展开
这是一份初中第九章 三角形综合与测试综合训练题,共23页。试卷主要包含了下列各图中,有△ABC的高的是等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、以下列各组线段为边,能组成三角形的是( )A.3cm,4cm,5cm B.3cm,3cm,6cm C.5cm,10cm,4cm D.1cm,2cm,3cm2、如图,,,,则的度数是( )A.10° B.15° C.20° D.25°3、如图, ( )A.180° B.360° C.270° D.300°4、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是( )A.50° B.60° C.40° D.30°5、已知三角形的两边长分别为和,则下列长度的四条线段中能作为第三边的是( )A. B. C. D.6、下列各图中,有△ABC的高的是( )A. B.C. D.7、如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是( )A.BE是△ABD的中线 B.BD是△BCE的角平分线C.∠1=∠2=∠3 D.S△AEB=S△EDB8、下图中能体现∠1一定大于∠2的是( )A. B.C. D.9、如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=32°,∠B=30°,则∠ACE的大小是( )A.63° B.58° C.54° D.56°10、下列图形中,不具有稳定性的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,把纸片沿DE折叠,使点A落在图中的处,若,,则的大小为______.2、如图,把△ABC绕点C顺时针旋转某个角度α得到,∠A=30°,∠1=70°,则旋转角α的度数为_____.3、△ABC中,已知∠C=90°,∠B=55°,则∠A=_____.4、不等边△ABC的两条高的长度分别为4和12,若第三条高也为整数,那么它的长度最大值是_________5、如图,在△ABC中,点D为BC边延长线上一点,若∠ACD=75°,∠A=45°,则∠B的度数为__________.三、解答题(5小题,每小题10分,共计50分)1、如图,点C,B分别在直线MN,PQ上,点A在直线MN,PQ之间,MN∥PQ.(1)如图1,求证:∠A=∠MCA+∠PBA;(2)如图2,过点C作CD∥AB,点E在PQ上,∠ECM=∠ACD,求证:∠A=∠ECN;(3)在(2)的条件下,如图3,过点B作PQ的垂线交CE于点F,∠ABF的平分线交AC于点G,若∠DCE=∠ACE,∠CFB=∠CGB,求∠A的度数.2、如图,在△ABC中,点D为∠ABC的平分线BD上一点,连接AD,过点D作EF∥BC交AB于点E,交AC于点F.(1)如图1,若AD⊥BD于点D,∠BEF=120°,求∠BAD的度数;(2)如图2,若∠ABC=α,∠BDA=β,求∠FAD十∠C的度数(用含α和β的代数式表示).3、如图,BD⊥AC,∠1=∠2,∠C=66°,求∠ABC的度数.4、如图,点E为直线AB上一点,∠CAE=2∠B,BC平分∠ACD,求证:AB∥CD.5、如图所示,在一副三角板ABC和三角板DEC中,,,∠B=30°,∠DEC=∠DCE=45°.(1)当AB∥DC时,如图①,的度数为 °;(2)当与重合时,如图②,判断与的位置关系并说明理由;(3)如图③,当= °时,AB∥EC;(4)当AB∥ED时,如图④、图⑤,分别求出的度数. -参考答案-一、单选题1、A【解析】【分析】三角形的任意两条之和大于第三边,任意两边之差小于第三边,根据原理再分别计算每组线段当中较短的两条线段之和,再与最长的线段进行比较,若和大于最长的线段的长度,则三条线段能构成三角形,否则,不能构成三角形,从而可得答案.【详解】解: 所以以3cm,4cm,5cm为边能构成三角形,故A符合题意; 所以以3cm,3cm,6cm为边不能构成三角形,故B不符合题意; 所以以5cm,10cm,4cm为边不能构成三角形,故C不符合题意; 所以以1cm,2cm,3cm为边不能构成三角形,故D不符合题意;故选A【点睛】本题考查的是三角形的三边之间的关系,掌握“利用三角形三边之间的关系判定三条线段能否组成三角形”是解本题的关键.2、B【解析】【分析】根据平行线的性质求出关于∠DOE,然后根据外角的性质求解.【详解】解:∵AB∥CD,∠A=45°,∴∠A=∠DOE=45°,∵∠DOE=∠C+∠E,又∵,∴∠E=∠DOE-∠C=15°.故选:B【点睛】本题比较简单,考查的是平行线的性质及三角形内角与外角的关系.掌握两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和是解题关键.3、A【解析】【分析】利用三角形外角定理及三角形内角和公式求解即可.【详解】解:∵∠7=∠4+∠2,∠6=∠1+∠3,∴∠6+∠7=∠1+∠2+∠3+∠4,∵∠5+∠6+∠7=180°,∴∠1+∠2+∠3+∠4+∠5=180°.故选:A.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.4、A【解析】【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将△OAB绕点O逆时针旋转80°得到△OCD, ∠A的度数为110°,∠D的度数为40°, 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.5、C【解析】【分析】根据三角形的三边关系可得,再解不等式可得答案.【详解】解:设三角形的第三边为,由题意可得:,即,故选:C.【点睛】本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.6、B【解析】【分析】利用三角形的高的定义可得答案.【详解】解:∵选项B是过顶点C作的AB边上的高,∴有△ABC的高的是选项B,故选:B.【点睛】此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.7、C【解析】【分析】根据三角形中线、角平分线的定义逐项判断即可求解.【详解】解:A、∵AE=DE,∴BE是△ABD的中线,故本选项不符合题意;B、∵BD平分∠EBC,∴BD是△BCE的角平分线,故本选项不符合题意;C、∵BD平分∠EBC,∴∠2=∠3,但不能推出∠2、∠3和∠1相等,故本选项符合题意;D、∵S△AEB=×AE×BC,S△EDB=×DE×BC,AE=DE,∴S△AEB=S△EDB,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形中线、角平分线的定义,熟练掌握三角形中,连接一个顶点和它的对边的中点的线段叫做三角形的中线;三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫三角形的角平分线是解题的关键.8、C【解析】【分析】由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.【详解】解:A、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;B、如图, 若两线平行,则∠3=∠2,则 若两线不平行,则大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;C、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;D、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.故选:C.【点睛】本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.9、C【解析】【分析】先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.【详解】解:∵∠A=33°,∠B=30°,∴∠ACD=∠A+∠B=33°+30°=63°,∵△ABC绕点C按逆时针方向旋转至△DEC,∴△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD,∴∠BCE=63°,∴∠ACE=180°-∠ACD-∠BCE=180°-63°-63°=54°.故选:C.【点睛】本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DEC.10、B【解析】【分析】由三角形的稳定性的性质判定即可.【详解】A选项为三角形,故具有稳定性,不符合题意,故错误;B选项为四边形,非三角形结构,故不具有稳定性,符合题意,故正确;C选项为三个三角形组成的图形,属于三角形结构,故具有稳定性,不符合题意,故错误;D选项为两个三角形组成的图形,属于三角形结构,故具有稳定性,不符合题意,故错误.故选B.【点睛】本题考查了三角形的稳定性,如果三角形的三条边固定,那么三角形的形状和大小就完全确定了,三角形的这个特征,叫做三角形的稳定性注意①要看图形是否具有稳定性,关键在于它的结构是不是三角形结构②除了三角形外,其他图形都不具备稳定性,因此在生产建设中,三角形的应用非常广泛.二、填空题1、##32度【解析】【分析】利用折叠性质得,,再根据三角形外角性质得,利用邻补角得到,则,然后利用进行计算即可.【详解】解:∵,∴,∵纸片沿DE折叠,使点A落在图中的A'处,∴,,∵,∴,∴,∴.故答案为:.【点睛】本题考查了折叠的性质,三角形外角的性质,三角形内角和定理等,理解题意,熟练掌握综合运用各个知识点是解题关键.2、##度【解析】【分析】由旋转的性质可得再利用三角形的外角的性质求解从而可得答案.【详解】解: 把△ABC绕点C顺时针旋转某个角度α得到,∠A=30°, ∠1=70°, 故答案为:【点睛】本题考查的是旋转的性质,三角形的外角的性质,利用性质的性质求解是解本题的关键.3、35°【解析】【分析】根据三角形的内角和定理列式计算即可得解.【详解】∵∠C=90°,∠B=55°,∴∠A=180°-∠B-∠C=180°-55°-90°=35°.故答案为:35°.【点睛】本题考查了三角形的内角和定理,是基础题,熟记定理并准确计算是解题的关键.4、5【解析】【分析】根据三角形三边关系及三角形面积相等即可求出要求高的整数值.【详解】解:因为不等边△ABC的两条高的长度分别为4和12,根据面积相等可设 △ABC的两边长为3x,x;因为 3x×4=12×x(2倍的面积),面积S=6x,因为知道两条边的假设长度,根据两边之和大于第三边,两边之差小于第三边可得:2x<第三边长度<4x,因为要求高的最大长度,所以当第三边最短时,在第三边上的高就越长,S=×第三边的长×高,6x>×2x×高,6x<×4x×高,∴6>高>3,∵是不等边三角形,且高为整数,∴高的最大值为5,故答案为:5.【点睛】本题考查了三角形三边关系及三角形的面积,难度较大,关键是掌握三角形任意两边之和大于第三边,三角形的任意两边差小于第三边.5、30°##30度【解析】【分析】根据三角形的外角的性质,即可求解.【详解】解:∵ ,∴ ,∵∠ACD=75°,∠A=45°,∴ .故答案为:30°【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.三、解答题1、(1)见解析;(2)见解析;(3)72°.【解析】【分析】(1)过点A作平行线,证出三条直线互相平行,由平行得出与∠ACM和∠ABP相等的角即可得出结论;(2)由CD∥AB,可得同旁内角互补,再结合∠ECM与∠ECN的邻补角关系,可得结论;(3)延长CA交PQ于点H,先证明∠MCA=∠ACE=∠ECD,∠ABP=∠NCD,再设∠MCA=∠ACE=∠ECD=x,由(1)可知∠CFB=∠FCN+∠FBQ,从而∠CFB=270-2x,列出方程解得x值,则不难求得答案.【详解】解:(1)证明:过点A作AD∥MN,∵MN∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠A=∠MCA+∠PBA;(2)∵CD∥AB,∴∠A+∠ACD=180°,∵∠ECM+∠ECN=180°,又∠ECM=∠ACD,∴∠A=∠ECN;(3)如图,延长CA交PQ于点H,∵∠ECM=∠ACD,∠DCE=∠ACE,∴∠MCA=∠ACE=∠ECD,∵MN∥PQ,∴∠MCA=∠AHB,∵∠CAB=∠AHB+∠PBA,且由(2)知∠CAB=∠ECN,∴∠ABP=∠NCD,设∠MCA=∠ACE=∠ECD=x,由(1)可知∠CFB=∠FCN+∠FBQ,∴∠CFB=270-2x,由(1)可知∠CGB=∠MCG+∠GBP,∴∠CGB=135°−x,∴270°−2x= (135°−x) ,解得:x=54°,∴∠AHB=54°,∴∠ABP=∠NCD=180°-54°×3=18°,∴∠CAB=54°+18°=72°.【点睛】本题考查了平行线的性质及一元一次方程在计算问题中的应用,三角形的内角和定理以及三角形的外角性质,理清题中的数量关系并正确列式是解题的关键.2、(1)60°;(2)β-α.【解析】【分析】(1)根据平行线的性质和平角的定义可得∠EBC=60°,∠AEF=60°,根据角平分线的性质和平行线的性质可得∠EBD=∠BDE=∠DBC=30°,再根据三角形内角和定理可求∠BAD的度数;(2)过点A作AG∥BC,则∠BDA=∠DBC+∠DAG=∠DBC+∠FAD+∠FAG=∠DBC+∠FAD+∠C=β,依此即可求解.【详解】解:(1)∵EF∥BC,∠BEF=120°,∴∠EBC=60°,∠AEF=60°,又∵BD平分∠EBC,∴∠EBD=∠BDE=∠DBC=30°,又∵∠BDA=90°,∴∠EDA=60°,∴∠BAD=60°;(2)如图2,过点A作AG∥BC,则∠BDA=∠DBC+∠DAG=∠DBC+∠FAD+∠FAG=∠DBC+∠FAD+∠C=β,则∠FAD+∠C=β-∠DBC=β-∠ABC=β-α.【点睛】考查了三角形内角和定理,平行线的性质,角平分线的性质,准确识别图形是解题的关键.3、69°【解析】【分析】利用三角形的内角和定理先求出∠2、∠CBD的度数,再利用角的和差关系求出∠ABC的度数.【详解】解:∵BD⊥AC,∴∠ADB=∠BDC=90°.∵∠1=∠2,∠C=66°,∴∠1=∠2=∠ADB=45°,∠CBD=∠ADB﹣∠C=24°.∴∠ABC=∠2+∠CBD=45°+24°=69°.【点睛】本题考查了三角形的内角和定理,掌握三角形的内角和等于180°是解决本题的关键.4、见解析【解析】【分析】根据三角形外角的性质,可得∠B=∠ACB,再由BC平分∠ACD,可得∠B=∠DCB,即可求证.【详解】证明:∵∠CAE=∠ACB+∠B,∠CAE=2∠B,∴∠B=∠ACB,又∵BC平分∠ACD,∴∠ACB=∠DCB,∴∠B=∠DCB,∴AB∥CD(内错角相等,两直线平行).【点睛】本题主要考查了平行线的判定,三角形外角的性质,角平分线的定义,熟练掌握平行线的判定定理,三角形外角的性质定理是解题的关键.5、(1)30;(2)DE∥AC,理由见解析;(3)15;(4)图④∠DCB=60°;图⑤∠DCB=120°;【解析】【分析】(1)根据两直线平行,内错角相等求解即可;(2)根据内错角相等,两直线平行证明即可;(3)根据AB∥EC,得到∠ECB=∠B=30°,即可得到∠DCB=∠DCE-∠ECB=15°;(4)如图④所示,,设CD与AB交于F,由平行线的性质可得∠BFC=∠EDC=90°,再由三角形内角和定理∠DCB=180°-∠BFC-∠B=60°;如图⑤所示,延长AC交ED延长线于G,由平行线的性质可得∠G=∠A=60°,再由∠ACB=∠CDE=90°,得到∠BCG=∠CDG=90°,即可求出∠DCG=180°-∠G-∠CDG=30°,则∠BCD=∠BCG+∠DCG=120°.【详解】解:(1)∵AB∥CD,∴∠BCD=∠B=30°,故答案为:30;(2)DE∥AC,理由如下:∵∠CBE=∠ACB=90°,∴DE∥AC;(3)∵AB∥EC,∴∠ECB=∠B=30°,又∵∠DCE=45°,∴∠DCB=∠DCE-∠ECB=15°,∴当∠DCB=15°时,AB∥EC,故答案为:15;(4)如图④所示,设CD与AB交于F,∵AB∥ED,∴∠BFC=∠EDC=90°,∴∠DCB=180°-∠BFC-∠B=60°;如图⑤所示,延长AC交ED延长线于G,∵AB∥DE,∴∠G=∠A=60°,∵∠ACB=∠CDE=90°,∴∠BCG=∠CDG=90°,∴∠DCG=180°-∠G-∠CDG=30°,∴∠DCB=∠BCG+∠DCG=120°.【点睛】本题主要考查了平行线的性质与判定,三角形内角和定理,邻补角互补等等,解题的关键在于能够熟练掌握平行线的性质与判定条件.
相关试卷
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试习题,共20页。试卷主要包含了定理,如图,在中,若点使得,则是的等内容,欢迎下载使用。
这是一份数学七年级下册第九章 三角形综合与测试达标测试,共23页。试卷主要包含了下列各图中,有△ABC的高的是,如图,在ABC中,点D等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试习题,共20页。试卷主要包含了定理,三角形的外角和是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)