![2022年冀教版七年级数学下册第九章 三角形同步训练练习题01](http://img-preview.51jiaoxi.com/2/3/12767190/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年冀教版七年级数学下册第九章 三角形同步训练练习题02](http://img-preview.51jiaoxi.com/2/3/12767190/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年冀教版七年级数学下册第九章 三角形同步训练练习题03](http://img-preview.51jiaoxi.com/2/3/12767190/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学七年级下册第九章 三角形综合与测试综合训练题
展开冀教版七年级数学下册第九章 三角形同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,图形中的的值是( )
A.50 B.60 C.70 D.80
2、如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,∠EAB=72°,以下四个说法:
①∠CDF=30°;②∠ADB=50°;
③∠ABD=22°;④∠CBN=108°
其中正确说法的个数是( )
A.1个 B.2个 C.3个 D.4个
3、如图,将一个含有30°角的直角三角板放置在两条平行线a,b上,若,则的度数为( )
A.85° B.75° C.55° D.95°
4、下列长度的三条线段能组成三角形的是( )
A.3 4 8 B.4 4 10 C.5 6 10 D.5 6 11
5、下列长度的三条线段能组成三角形的是( )
A.3,4,7 B.3,4,8 C.3,4,5 D.3,3,7
6、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为( )
A.105° B.120° C.135° D.150°
7、下列叙述正确的是( )
A.三角形的外角大于它的内角 B.三角形的外角都比锐角大
C.三角形的内角没有小于60°的 D.三角形中可以有三个内角都是锐角
8、如图,在△ABC中,AD是△ABC的中线,△ABD的面积为3,则△ABC的面积为( )
A.8 B.7 C.6 D.5
9、如图,点B、G、C在直线FE上,点D在线段AC上,下列是△ADB的外角的是( )
A.∠FBA B.∠DBC C.∠CDB D.∠BDG
10、如图,已知,,,则的度数为( )
A.155° B.125° C.135° D.145°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图:中,,,于D,CE平分,于F,则______°.
2、一副直角三角板,∠CAB=∠FDE=90°,∠F=45°,∠C=60°,按图中所示位置摆放,点D在边AB上,EFBC,则∠ADF的度数为_____度.
3、如图,AD是△ABC的中线,BE是△ABD的中线,若△ABC的面积为24 cm2,则△ABE的面积为________cm2
4、如图,在△ABC中,∠C=62°,△ABC两个外角的角平分线相交于G,则∠G的度数为_____.
5、在△ABC中,三边为、、,如果,,,那么的取值范围是_____.
三、解答题(5小题,每小题10分,共计50分)
1、如图所示,在一副三角板ABC和三角板DEC中,,,∠B=30°,∠DEC=∠DCE=45°.
(1)当AB∥DC时,如图①,的度数为 °;
(2)当与重合时,如图②,判断与的位置关系并说明理由;
(3)如图③,当= °时,AB∥EC;
(4)当AB∥ED时,如图④、图⑤,分别求出的度数.
2、如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.
3、如图,在△ABC中,∠ABC=30°,∠C=80°,AD是△ABC的角平分线,BE是△ABD中AD边上的高,求∠ABE的度数.
4、如图,BD是的角平分线,BE是的AC边上的中线.
(1)若的周长为13,,,求AB的长.
(2)若,,求的度数.
5、如图,ABCD,∠BMN与∠DNM的平分线相交于点G,
完成下面的证明:
∵MG平分∠BMN,
∴∠GMN=∠BMN( ),
同理∠GNM=∠DNM.
∵ABCD
∴∠BMN+∠DNM=________( ).
∴∠GMN+∠GNM=________.
∵∠GMN+∠GNM+∠G=________,
∴∠G=________.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据三角形外角的性质:三角形一个外角的度数等于与其不相邻的两个内角的度数和进行求解即可.
【详解】
解:由题意得:
∴,
∴,
故选B.
【点睛】
本题主要考查了三角形外角的性质,解一元一次方程,熟知三角形外角的性质是解题的关键.
2、D
【解析】
【分析】
根据AD∥BC,∠C=30°,利用内错角相等得出∠FDC=∠C=30°,可判断①正确;根据邻补角性质可求∠ADC=180°-∠FDC=180°-30°=150°,根据∠ADB:∠BDC=1:2,得出方程3∠ADB=150°,解方程可判断②正确;根据∠EAB=72°,可求邻补角∠DAN=180°-∠EAB=180°-72°=108°,利用三角形内角和可求∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°可判断③正确,利用AD∥BC,同位角相等的∠CBN=∠DAN=108°可判断④正确即可.
【详解】
解:∵AD∥BC,∠C=30°,
∴∠FDC=∠C=30°,故①正确;
∴∠ADC=180°-∠FDC=180°-30°=150°,
∵∠ADB:∠BDC=1:2,
∴∠BDC=2∠ADB,
∵∠ADC=∠ADB+∠BDC=∠ADB+2∠ADB=3∠ADB=150°,
解得∠ADB=50°,故②正确
∵∠EAB=72°,
∴∠DAN=180°-∠EAB=180°-72°=108°,
∴∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°,故③正确
∵AD∥BC,
∴∠CBN=∠DAN=108°,故④正确
其中正确说法的个数是4个.
故选择D.
【点睛】
本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键.
3、A
【解析】
【分析】
由平行线的性质,得,然后由三角形外角的性质,即可求出答案.
【详解】
解:由题意,如图,
∵,
∴,
∵,
∴;
故选:A
【点睛】
本题考查了三角形的外角性质,平行线的性质,解题的关键是掌握所学的知识,正确求出.
4、C
【解析】
【分析】
根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.
【详解】
解:A.∵3+4<8,
∴不能组成三角形,故本选项不符合题意;
B.∵4+4<10,
∴不能组成三角形,故本选项不符合题意;
C.∵5+6>10,
∴能组成三角形,故本选项符合题意;
D.∵5+6=11,
∴不能组成三角形,故本选项不符合题意;
故选:C.
【点睛】
本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.
5、C
【解析】
【分析】
根据组成三角形的三边关系依次判断即可.
【详解】
A、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误.
B、 3,4,8中3+4<8,故不能组成三角形,与题意不符,选项错误.
C、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确.
D、 3,3,7中3+3<7,故不能组成三角形,与题意不符,选项错误.
故选:C.
【点睛】
本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.
6、B
【解析】
【分析】
由题意易得,然后根据三角形外角的性质可求解.
【详解】
解:由旋转的性质可得:,
∴;
故选B.
【点睛】
本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.
7、D
【解析】
【分析】
结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.
【详解】
解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;
三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;
三角形的内角可以小于60°,一个三角形的三个角可以为: 故C不符合题意;
三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;
故选D
【点睛】
本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.
8、C
【解析】
【分析】
根据三角形的中线将三角形的面积分成相等的两部分即可求解.
【详解】
解:∵△ABC中,AD是BC边上的中线,△ABD的面积为3,
∴△ABC的面积=3×2=6.
故选:C.
【点睛】
考查了三角形的面积,关键是熟悉三角形的中线将三角形的面积分成相等的两部分的知识点.
9、C
【解析】
【分析】
根据三角形的外角的概念解答即可.
【详解】
解:A.∠FBA是△ABC的外角,故不符合题意;
B. ∠DBC不是任何三角形的外角,故不符合题意;
C.∠CDB是∠ADB的外角,符合题意;
D. ∠BDG不是任何三角形的外角,故不符合题意;
故选:C.
【点睛】
本题考查的是三角形的外角的概念,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.
10、B
【解析】
【分析】
根据三角形外角的性质得出,再求即可.
【详解】
解:∵,
∴,
∵,
∴,
∴;
故选:B.
【点睛】
本题考查了三角形外角的性质,解题关键是准确识图,理清角之间的关系.
二、填空题
1、80
2、75
【解析】
【分析】
设CB与ED交点为G,依据平行线的性质,即可得到∠CGD的度数,再根据三角形外角的性质,得到∠BDE的度数,即可得∠ADF的度数.
【详解】
如图所示,设CB与ED交点为G,
∵∠CAB=∠FDE=90°,∠F=45°,∠C=60°,
∴∠E=90°-∠F=45°,∠B=90°-∠C=30°,
∵EF∥BC,
∴∠E=∠CGD=45°,
又∵∠CGD是△BDG的外角,
∴∠CGD=∠B+∠BDE,
∴∠BDE=45°-30°=15°,
∴∠ADF =180°-90°-∠BDE =75°
故答案为:75.
【点睛】
本题主要考查了平行线的性质以及三角形外角性质,解题时注意:两条平行线被第三条直线所截,同位角相等.
3、6
【解析】
【分析】
中线将三角形分成两个面积相等的三角形,可知,计算求解即可.
【详解】
解:由题意知
∴
∵
∴
故答案为:6.
【点睛】
本题考查了三角形的中线.解题的关键在于理解中线将三角形分成两个面积相等的三角形.
4、59°##59度
【解析】
【分析】
先利用三角形内角和定理求出∠CAB+∠CBA=180°-∠C=118°,从而利用三角形外角的性质求出∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,再由角平分线的定义求出,由此求解即可.
【详解】
解:∵∠C=62°,
∴∠CAB+∠CBA=180°-∠C=118°,
∵∠DAB=∠C+∠CBA,∠EBA=∠C+∠CAB,
∴∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,
∵△ABC两个外角的角平分线相交于G,
∴,,
∴,
∴∠G=180°-∠GAB-∠GBA=59°,
故答案为:59°.
【点睛】
本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义,熟知相关知识是解题的关键.
5、4<x<28
【解析】
【分析】
根据三角形三边的关系:两边之和大于第三边,两边之差小于第三边解答即可;
【详解】
解:由题意得:
解得:4<x<28.
故答案为:4<x<28
【点睛】
本题考查了三角形三边的关系,熟练掌握三角形三边的关系是解题的关键.
三、解答题
1、(1)30;(2)DE∥AC,理由见解析;(3)15;(4)图④∠DCB=60°;图⑤∠DCB=120°;
【解析】
【分析】
(1)根据两直线平行,内错角相等求解即可;
(2)根据内错角相等,两直线平行证明即可;
(3)根据AB∥EC,得到∠ECB=∠B=30°,即可得到∠DCB=∠DCE-∠ECB=15°;
(4)如图④所示,,设CD与AB交于F,由平行线的性质可得∠BFC=∠EDC=90°,再由三角形内角和定理∠DCB=180°-∠BFC-∠B=60°;如图⑤所示,延长AC交ED延长线于G,由平行线的性质可得∠G=∠A=60°,再由∠ACB=∠CDE=90°,得到∠BCG=∠CDG=90°,即可求出∠DCG=180°-∠G-∠CDG=30°,则∠BCD=∠BCG+∠DCG=120°.
【详解】
解:(1)∵AB∥CD,
∴∠BCD=∠B=30°,
故答案为:30;
(2)DE∥AC,理由如下:
∵∠CBE=∠ACB=90°,
∴DE∥AC;
(3)∵AB∥EC,
∴∠ECB=∠B=30°,
又∵∠DCE=45°,
∴∠DCB=∠DCE-∠ECB=15°,
∴当∠DCB=15°时,AB∥EC,
故答案为:15;
(4)如图④所示,设CD与AB交于F,
∵AB∥ED,
∴∠BFC=∠EDC=90°,
∴∠DCB=180°-∠BFC-∠B=60°;
如图⑤所示,延长AC交ED延长线于G,
∵AB∥DE,
∴∠G=∠A=60°,
∵∠ACB=∠CDE=90°,
∴∠BCG=∠CDG=90°,
∴∠DCG=180°-∠G-∠CDG=30°,
∴∠DCB=∠BCG+∠DCG=120°.
【点睛】
本题主要考查了平行线的性质与判定,三角形内角和定理,邻补角互补等等,解题的关键在于能够熟练掌握平行线的性质与判定条件.
2、见解析
【解析】
【分析】
连接,,再根据三角形的三边关系即可得出结论.
【详解】
连接,,
,,
.
当且仅当CD过圆心O时,取“=”号,
.
【点睛】
本题考查的是三角形的三边关系,解题的关键是熟知三角形任意两边之和大于第三边.
3、55°
【解析】
【分析】
先根据三角形内角和定理及角平分线的性质求出∠BAD度数,由AE⊥BE可求出∠AEB=90°,再由三角形的内角和定理即可解答.
【详解】
解:∵∠ABC=30°,∠C=80°,
∴∠BAC=180°-30°-80°=70°,
∵AD是∠BAC的平分线,
∴∠BAD=×70°=35°,
∵AE⊥BE,
∴∠AEB=90°,
∴∠ABE=180°-∠AEB-∠BAE=180°-90°-35°=55°.
【点睛】
本题考查的是角平分线的定义,高的定义及三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.
4、(1)3;(2).
【解析】
【分析】
(1)首先根据中线的性质得到,然后根据的周长为13,即可求出AB的长;
(2)首先根据BD是的角平分线得到,然后根据三角形内角和定理即可求出的度数.
【详解】
(1)∵BE是的AC边上的中线,
∴,
又∵的周长为13,
∴;
(2)∵BD是的角平分线,
∴,
又∵,
∴.
【点睛】
此题考查三角形中线和角平分线的概念,三角形内角和定理的运用,解题的关键是熟练掌握三角形中线和角平分线的概念,三角形内角和定理.
5、角分线的定义;180°;两直线平行,同旁内角互补;90°;180°;90°
【解析】
【分析】
根据角平分线的定义,可得∠GMN=∠BMN,∠GNM=∠DNM. 再由ABCD,可得∠BMN+∠DNM=180°,从而得到∠GMN+∠GNM=90°.然后根据三角形的内角和定理,即可求解.
【详解】
证明:∵MG平分∠BMN,
∴∠GMN=∠BMN(角分线的定义),
同理∠GNM=∠DNM.
∵ABCD,
∴∠BMN+∠DNM=180°(两直线平行,同旁内角互补).
∴∠GMN+∠GNM=90°.
∵∠GMN+∠GNM+∠G=180°,
∴∠G=90°.
【点睛】
本题主要考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟练掌握相关知识点是解题的关键.
2020-2021学年第九章 三角形综合与测试同步练习题: 这是一份2020-2021学年第九章 三角形综合与测试同步练习题,共26页。试卷主要包含了如图,已知,,,则的度数为,如图,直线l1l2,被直线l3,三角形的外角和是等内容,欢迎下载使用。
冀教版七年级下册第九章 三角形综合与测试同步达标检测题: 这是一份冀教版七年级下册第九章 三角形综合与测试同步达标检测题,共21页。试卷主要包含了下列叙述正确的是等内容,欢迎下载使用。
初中数学冀教版七年级下册第九章 三角形综合与测试巩固练习: 这是一份初中数学冀教版七年级下册第九章 三角形综合与测试巩固练习,共24页。试卷主要包含了如图,在中,若点使得,则是的,如图,是的中线,,则的长为,如图,在中,,,则外角的度数是,已知△ABC的内角分别为∠A等内容,欢迎下载使用。