冀教版七年级下册第九章 三角形综合与测试课后作业题
展开
这是一份冀教版七年级下册第九章 三角形综合与测试课后作业题,共22页。试卷主要包含了若三角形的两边a等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、当三角形中一个内角是另一个内角的2倍时,我们称此三角形为“特征三角形”,其中称为“特征角”.如果一个“特征三角形”的“特征角”为60°,那么这个“特征三角形”的最大内角的度数是( )A.80° B.90° C.100° D.120°2、如图,和相交于点O,则下列结论不正确的是( )A. B. C. D.3、如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外面时,此时测得∠1=112°,∠A=40°,则∠2的度数为( )A.32° B.33° C.34° D.38°4、若三角形的两边a、b的长分别为3和4,则其第三边c的取值范围是( )A.3<c<4 B.2≤c≤6 C.1<c<7 D.1≤c≤75、如果一个三角形的两边长都是6cm,则第三边的长不能是( )A.3cm B.6cm C.9cm D.13cm6、已知三角形的两边长分别为2cm和3cm,则第三边长可能是( )A.6cm B.5cm C.3cm D.1cm7、已知三角形的两边长分别为和,则下列长度的四条线段中能作为第三边的是( )A. B. C. D.8、如图,将的BC边对折,使点B与点C重合,DE为折痕,若,,则( ).A.45° B.60° C.35° D.40°9、如图,将一副三角板平放在一平面上(点D在上),则的度数为( )A. B. C. D.10、有下列长度的三条线段,其中能组成三角形的是( )A.4,5,9 B.2.5,6.5,10 C.3,4,5 D.5,12,17第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个三角形的两边分别是3和7,如果第三边长为整数,那么第三边可取的最大整数是___.2、如图,把纸片沿DE折叠,使点A落在图中的处,若,,则的大小为______.3、如图,在ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且ABC的面积等于24cm2,则阴影部分图形面积等于_____cm24、如图,∠MAN=100°,点B,C是射线AM,AN上的动点,∠ACB的平分线和∠MBC的平分线所在直线相交于点D,则∠BDC的大小为__________度.5、如图,点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC中,点D为∠ABC的平分线BD上一点,连接AD,过点D作EF∥BC交AB于点E,交AC于点F.(1)如图1,若AD⊥BD于点D,∠BEF=120°,求∠BAD的度数;(2)如图2,若∠ABC=α,∠BDA=β,求∠FAD十∠C的度数(用含α和β的代数式表示).2、如图,在ABC中,AC=6,BC=8,AD⊥BC于D,AD=5,BE⊥AC于E,求BE的长.3、已知是的三边长.(1)若满足,,试判断的形状;(2)化简:4、(1)如图,AB//CD,CF平分∠DCE,若∠DCF=30°,∠E=20°,求∠ABE的度数;(2)如图,AB//CD,∠EBF=2∠ABF,CF平分∠DCE,若∠F的2倍与∠E的补角的和为190°,求∠ABE的度数.(3)如图,P为(2)中射线BE上一点,G是CD上任一点,PQ平分∠BPG,GN//PQ,GM平分∠DGP,若∠B=30°,求∠MGN的度数.5、如图,AD是△ABC的高,AE平分∠BAC.(1)若∠B=62°,∠C=46°,求∠DAE的度数;(2)若,求∠DAE的度数. -参考答案-一、单选题1、B【解析】【分析】根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最大内角即可.【详解】解:由题意得:α=2β,α=60°,则β=30°,180°-60°-30°=90°,故选B.【点睛】此题主要考查了新定义以及三角形的内角和定理,根据已知得出β的度数是解题关键.2、B【解析】【分析】根据两直线相交对顶角相等、三角形角的外角性质即可确定答案.【详解】解:选项A、∵∠1与∠2互为对顶角,∴∠1=∠2,故选项A不符合题意;选项B、∵∠1=∠B+∠C,∴∠1>∠B,故选项B符合题意;选项C、∵∠2=∠D+∠A,∴∠2>∠D,故选项C不符合题意;选项D、∵,,∴,故选项D不符合题意;故选:B.【点睛】本题主要考查了对顶角的性质、平行线的性质和三角形内角和、外角的性质,能熟记对顶角的性质是解此题的关键.3、A【解析】【分析】由折叠的性质可知,再由三角形外角的性质即可求出的大小,再次利用三角形外角的性质即可求出的大小.【详解】如图,设线段和线段交于点F.由折叠的性质可知.∵,即,∴.∵,即,∴.故选A.【点睛】本题考查折叠的性质,三角形外角的性质.利用数形结合的思想是解答本题的关键.4、C【解析】【分析】根据三角形的两边之和大于第三边,两边之差小于第三边,即可求解.【详解】解:∵三角形的两边a、b的长分别为3和4,∴其第三边c的取值范围是 ,即 .故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.5、D【解析】【分析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”,这样就可求出第三边长的范围,进而选出答案【详解】解:设它的第三条边的长度为xcm,依题意有 ,即,故只有D符合题意,故选:D.【点睛】本题考查的是三角形的三边关系,掌握三角形三边关系:三角形两边之和大于第三边、三角形的两边差小于第三边是解题的关键.6、C【解析】【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:设第三边长为xcm,根据三角形的三边关系可得:3-2<x<3+2,解得:1<x<5,只有C选项在范围内.故选:C.【点睛】本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.7、C【解析】【分析】根据三角形的三边关系可得,再解不等式可得答案.【详解】解:设三角形的第三边为,由题意可得:,即,故选:C.【点睛】本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.8、A【解析】【分析】由折叠得到∠B=∠BCD,根据三角形的内角和得∠A+∠B+∠ACB=180°,代入度数计算即可.【详解】解:由折叠得∠B=∠BCD,∵∠A+∠B+∠ACB=180°,,,∴65°+2∠B+25°=180°,∴∠B=45°,故选:A.【点睛】此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键.9、B【解析】【分析】根据三角尺可得,根据三角形的外角性质即可求得【详解】解:故选B【点睛】本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.10、C【解析】【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行逐一分析即可.【详解】解:根据三角形的三边关系,得,、,不能够组成三角形,不符合题意;、,不能够组成三角形,不符合题意;、,能够组成三角形,符合题意;、,不能组成三角形,不符合题意;故选:C.【点睛】此题主要考查了三角形三边关系,解题的关键是掌握判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.二、填空题1、9【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得第三边长的最大值.【详解】解:设第三边为a,根据三角形的三边关系,得:7﹣3<a<3+7,即4<a<10,∵a为整数,∴a的最大值为9.故答案为:9.【点睛】此题考查了三角形的三边关系.注意第三边是整数的已知条件.2、##32度【解析】【分析】利用折叠性质得,,再根据三角形外角性质得,利用邻补角得到,则,然后利用进行计算即可.【详解】解:∵,∴,∵纸片沿DE折叠,使点A落在图中的A'处,∴,,∵,∴,∴,∴.故答案为:.【点睛】本题考查了折叠的性质,三角形外角的性质,三角形内角和定理等,理解题意,熟练掌握综合运用各个知识点是解题关键.3、6【解析】【分析】因为点F是CE的中点,所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分别是BC、AD的中点,可得△EBC的面积是△ABC面积的一半;利用三角形的等积变换可解答.【详解】解:如图,点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=EC,而高相等,∴S△BEF=S△BEC,∵E是AD的中点,∴S△BDE=S△ABD,S△CDE=S△ACD,∴S△EBC=S△ABC,∴S△BEF=S△ABC,且S△ABC=24cm2,∴S△BEF=6cm2,即阴影部分的面积为6cm2.故答案为6.【点睛】本题考查了三角形面积的等积变换:若两个三角形的高(或底)相等,面积之比等于底边(高)之比.4、50【解析】【分析】根据角平分线的定义和三角形的外角性质解答即可.【详解】解:∵CD平分∠ACB,BE平分∠MBC,∴∠BCD=∠ACB,∠EBC=∠MBC,∵∠MBC=∠MAN+∠ACB,∠EBC=∠BDC+∠BCD,∠MAN=100°,∴∠BDC=∠EBC-∠BCD=∠MBC-∠ACB=∠MAN=50°,故答案为:50.【点睛】本题考查三角形的外角性质、角平分线的定义,熟练掌握三角形的外角性质是解答的关键.5、在三角形中,两边之和大于第三边【解析】【分析】根据三角形两边之和大于第三边进行求解即可.【详解】解:∵点A、B在直线l上,点C是直线l外一点,∴A、B、C可以构成三角形,∴由三角形三边的关系:在三角形中,两边之和大于第三边可以得到:CA+CB>AB,故答案为:在三角形中,两边之和大于第三边.【点睛】本题主要考查了三角形三边的关系,熟知三角形中两边之和大于第三边是解题的关键.三、解答题1、(1)60°;(2)β-α.【解析】【分析】(1)根据平行线的性质和平角的定义可得∠EBC=60°,∠AEF=60°,根据角平分线的性质和平行线的性质可得∠EBD=∠BDE=∠DBC=30°,再根据三角形内角和定理可求∠BAD的度数;(2)过点A作AG∥BC,则∠BDA=∠DBC+∠DAG=∠DBC+∠FAD+∠FAG=∠DBC+∠FAD+∠C=β,依此即可求解.【详解】解:(1)∵EF∥BC,∠BEF=120°,∴∠EBC=60°,∠AEF=60°,又∵BD平分∠EBC,∴∠EBD=∠BDE=∠DBC=30°,又∵∠BDA=90°,∴∠EDA=60°,∴∠BAD=60°;(2)如图2,过点A作AG∥BC,则∠BDA=∠DBC+∠DAG=∠DBC+∠FAD+∠FAG=∠DBC+∠FAD+∠C=β,则∠FAD+∠C=β-∠DBC=β-∠ABC=β-α.【点睛】考查了三角形内角和定理,平行线的性质,角平分线的性质,准确识别图形是解题的关键.2、.【解析】【分析】根据三角形面积公式计算即可.【详解】解:.【点睛】本题考查三角形面积的计算,利用等积法是解题关键.3、(1)是等边三角形;(2)【解析】【分析】(1)由性质可得a=b,b=c,故为等边三角形.(2)根据三角形任意两边和大于第三边,任意两边差小于第三边判定正负,再由绝对值性质去绝对值计算即可.【详解】(1)∵∴且∴ ∴是等边三角形.(2)∵是的三边长∴b-c-a<0,a-b+c>0,a-b-c<0原式===【点睛】本题考查了三角形三条边的关系以及绝对值化简,根据三角形任意两边和大于第三边,任意两边差小于第三边判定绝对值内数值正负是解题的关键.4、(1)∠ABE=40°;(2)∠ABE=30°;(3)∠MGN=15°.【解析】【分析】(1)过E作EMAB,根据平行线的判定与性质和角平分线的定义解答即可;(2)过E作EMAB,过F作FNAB,根据平行线的判定与性质,角平分线的定义以及解一元一次方程解答即可;(3)过P作PLAB,根据平行线的判定与性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义解答即可.【详解】解:(1)过E作EMAB,∵ABCD,∴CDEMAB,∴∠ABE=∠BEM,∠DCE=∠CEM,∵CF平分∠DCE,∴∠DCE=2∠DCF,∵∠DCF=30°,∴∠DCE=60°,∴∠CEM=60°,又∵∠CEB=20°,∴∠BEM=∠CEM﹣∠CEB=40°,∴∠ABE=40°;(2)过E作EMAB,过F作FNAB,∵∠EBF=2∠ABF,∴设∠ABF=x,∠EBF=2x,则∠ABE=3x,∵CF平分∠DCE,∴设∠DCF=∠ECF=y,则∠DCE=2y,∵ABCD,∴EMABCD,∴∠DCE=∠CEM=2y,∠BEM=∠ABE=3x,∴∠CEB=∠CEM﹣∠BEM=2y﹣3x,同理∠CFB=y﹣x,∵2∠CFB+(180°﹣∠CEB)=190°,∴2(y﹣x)+180°﹣(2y﹣3x)=190°, ∴x=10°,∴∠ABE=3x=30°;(3)过P作PLAB,∵GM平分∠DGP,∴设∠DGM=∠PGM=y,则∠DGP=2y,∵PQ平分∠BPG,∴设∠BPQ=∠GPQ=x,则∠BPG=2x,∵PQGN,∴∠PGN=∠GPQ=x,∵ABCD,∴PLABCD, ∴∠GPL=∠DGP=2y,∠BPL=∠ABP=30°,∵∠BPL=∠GPL﹣∠BPG,∴30°=2y﹣2x,∴y﹣x=15°,∵∠MGN=∠PGM﹣∠PGN=y﹣x,∴∠MGN=15°.【点睛】此题考查平行线的判定与性质,角平分线的定义,三角形的内角和定理,解题关键在于作辅助线和掌握判定定理.5、(1)8°;(2)15°【解析】【分析】(1)根据 三角形内角和定理求出∠BAC的度数,利用角平分线的性质求出∠CAE的度数,根据垂直的定义求出答案;(2)根据角平分线的性质推出∠CAE=∠BAE,利用垂直得到∠BAD+∠DAE=∠CAD-∠DAE,推出2∠DAE=,计算得到答案.【详解】解:(1)∵∠B=62°,∠C=46°,∴∠BAC=180°-∠B-∠C=72°,∵AE平分∠BAC,∴∠CAE=,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°-∠C=44°,∴∠DAE=∠DAC-∠CAE=8°;(2)∵AE平分∠BAC,∴∠CAE=∠BAE,∵AD⊥BC,∴∠ADC=90°,∴∠BAD=90°-∠B,∠CAD=90°-∠C,∴∠BAD+∠DAE=∠CAD-∠DAE,∴90°-∠B+∠DAE =90°-∠C-∠DAE,∴2∠DAE=,∴∠DAE=15°.【点睛】此题考查了三角形角平分线的性质,三角形内角和定理,垂直的定义,熟练掌握三角形的知识是解题的关键.
相关试卷
这是一份冀教版第九章 三角形综合与测试当堂检测题,共24页。试卷主要包含了如图,,,,则的度数是,下列各图中,有△ABC的高的是等内容,欢迎下载使用。
这是一份初中冀教版第九章 三角形综合与测试精练,共17页。试卷主要包含了下列图形中,不具有稳定性的是,若一个三角形的三个外角之比为3等内容,欢迎下载使用。
这是一份2021学年第九章 三角形综合与测试练习题,共22页。试卷主要包含了如图,在中,AD,如图,已知△ABC中,BD等内容,欢迎下载使用。