冀教版第九章 三角形综合与测试单元测试练习题
展开
这是一份冀教版第九章 三角形综合与测试单元测试练习题,共24页。试卷主要包含了如图,为估计池塘岸边A,三角形的外角和是等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,△AOB绕点O逆时针旋转65°得到△COD,若∠COD=30°,则∠BOC的度数是( )A.30° B.35° C.45° D.60°2、若一个三角形的两边长分别为3和8,则第三边长可能是 ( )A.4 B.5 C.8 D.113、如图,在中,,,将沿直线翻折,点落在点的位置,则的度数是( ) A.30° B.45° C.60° D.75°4、如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,OA=15米,OB=10米,A、B间的距离不可能是( )A.5米 B.10米 C.15米 D.20米5、三角形的外角和是( )A.60° B.90° C.180° D.360°6、将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=45°,那么∠BAF的大小为( )A.15° B.10° C.20° D.25°7、如图,把△ABC绕顶点C按顺时针方向旋转得到△A′B′C′,当A′B′⊥AC,∠A=50°,∠A′CB=115°时,∠B′CA的度数为( )A.30° B.35° C.40° D.45°8、王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?( )A.0根 B.1根 C.2根 D.3根9、如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外面时,此时测得∠1=112°,∠A=40°,则∠2的度数为( )A.32° B.33° C.34° D.38°10、以下列长度的各组线段为边,能组成三角形的是( )A.,, B.,,C.,, D.,,第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在直线l1∥l2,把三角板的直角顶点放在直线l2上,三角板中60°的角在直线l1与l2之间,如果∠1=35°,那么∠2=___度. 2、不等边△ABC的两条高的长度分别为4和12,若第三条高也为整数,那么它的长度最大值是_________3、如图,A,E,F共线,ABCD,∠A=130°,∠C=125°,则∠CEF等于_______度.4、已知a,b,c是△ABC的三边,化简:|a+b-c|+|b-a-c|=________.5、如图,将绕点B逆时针旋转,得到,若点E恰好落在的延长线上,则__________.三、解答题(5小题,每小题10分,共计50分)1、如图,AD是△ABC的边BC上的中线,已知AB=5,AC=3.(1)边BC的取值范围是 ;(2)△ABD与△ACD的周长之差为 ;(3)在△ABC中,若AB边上的高为2,求AC边上的高.2、如图:是一个大型模板,设计要求与相交成角,与相交成角,现小燕测得,她就断定这块模板是合格的,这是为什么?3、如图,在中,为的高,为的角平分线,交于点G,,,求的大小.4、如图,在△ABC中,∠ABC=30°,∠C=80°,AD是△ABC的角平分线,BE是△ABD中AD边上的高,求∠ABE的度数.5、将一副三角板中的两块直角三角尺的直角顶点C按如图1方式叠放在一起,其中,.(1)若,则的度数为_______;(2)直接写出与的数量关系:_________;(3)直接写出与的数量关系:__________;(4)如图2,当且点E在直线的上方时,将三角尺固定不动,改变三角尺的位置,但始终保持两个三角尺的顶点C重合,这两块三角尺是否存在一组边互相平行?请直接写出角度所有可能的值___________. -参考答案-一、单选题1、B【解析】【分析】由旋转的性质可得∠AOC=65°,由∠AOB=30°,即可求∠BOC的度数.【详解】解:∵△AOB绕点O逆时针旋转65°得到△COD,∴∠AOC=65°,∵∠AOB=30°,∴∠BOC=∠AOC−∠AOB=35°.故选:B.【点睛】本题考查了旋转的性质,三角形内角和定理,熟练运用旋转的性质是本题的关键.2、C【解析】【分析】直接利用三角形三边关系得出第三边的取值范围,进而得出答案.【详解】解:∵一个三角形的两边长分别为3和8,∴5<第三边长<11,则第三边长可能是:8.故选:C.【点睛】此题主要考查了三角形的三边关系,正确得出第三边的取值范围是解题关键.3、C【解析】【分析】设交于点,是射线上的一点,设,根据三角形的外角的性质可得,进而根据平角的定义即可求得,即可求得.【详解】如图,设交于点,是射线上的一点,折叠,设即故选C【点睛】本题考查了折叠的性质,三角形的外角的性质,掌握三角形外角的性质是解题的关键.4、A【解析】【分析】根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.【详解】解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B间的距离在5和25之间,∴A、B间的距离不可能是5米;故选:A.【点睛】本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.5、D【解析】【分析】根据三角形的内角和定理、邻补角的性质即可得.【详解】解:如图,,,又,,即三角形的外角和是,故选:D.【点睛】本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键.6、A【解析】【分析】利用DE∥AF,得∠CDE=∠CFA=45°,结合∠CFA=∠B+∠BAF计算即可.【详解】∵DE∥AF,∴∠CDE=∠CFA=45°,∵∠CFA=∠B+∠BAF,∠B=30°,∴∠BAF=15°,故选A.【点睛】本题考查了平行线的性质,三角形外角的性质,三角板的意义,熟练掌握平行线的性质是解题的关键.7、B【解析】【分析】由旋转的性质可得∠A′=∠A=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠A′CA=40°,即可求解.【详解】解:根据旋转的性质可知∠A′=∠A=50°,∠BCB'=∠ACA',∴∠A′CA=90°﹣50°=40°,∴∠BCB′=∠A′CA=40°,∴∠B′CA=∠A′CB﹣∠A′CA﹣∠BCB′=115°﹣40°﹣40°=35°.故选:B.【点睛】本题主要考查了旋转的性质,三角形内角和定理的应用,解决这类问题要找准旋转角、以及旋转后对应的线段和角.8、B【解析】【分析】根据三角形的稳定性即可得.【详解】解:要使这个木架不变形,王师傅至少还要再钉上1根木条,将这个四边形木架分成两个三角形,如图所示:或故选:B.【点睛】本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题关键.9、A【解析】【分析】由折叠的性质可知,再由三角形外角的性质即可求出的大小,再次利用三角形外角的性质即可求出的大小.【详解】如图,设线段和线段交于点F.由折叠的性质可知.∵,即,∴.∵,即,∴.故选A.【点睛】本题考查折叠的性质,三角形外角的性质.利用数形结合的思想是解答本题的关键.10、C【解析】【分析】根据三角形三条边的关系计算即可.【详解】解:A. ∵2+4=6,∴,,不能组成三角形;B. ∵2+5<9,∴,,不能组成三角形;C. ∵7+8>10,∴,,能组成三角形;D. ∵6+6<13,∴,,不能组成三角形;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.三角形任意两边之和大于第三边,任意两边之差小于第三边.二、填空题1、65【解析】【分析】根据三角形外角性质即可求得∠3的度数,再依据平行线的性质,可求得∠3=∠2.【详解】解:∵∠3是△ABC的外角,∠1=∠ABC=35°,∴∠3=∠C+∠ABC=30°+35°=65°,∵直线l1∥l2,∴∠2=∠3=65°,故答案为:65.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.2、5【解析】【分析】根据三角形三边关系及三角形面积相等即可求出要求高的整数值.【详解】解:因为不等边△ABC的两条高的长度分别为4和12,根据面积相等可设 △ABC的两边长为3x,x;因为 3x×4=12×x(2倍的面积),面积S=6x,因为知道两条边的假设长度,根据两边之和大于第三边,两边之差小于第三边可得:2x<第三边长度<4x,因为要求高的最大长度,所以当第三边最短时,在第三边上的高就越长,S=×第三边的长×高,6x>×2x×高,6x<×4x×高,∴6>高>3,∵是不等边三角形,且高为整数,∴高的最大值为5,故答案为:5.【点睛】本题考查了三角形三边关系及三角形的面积,难度较大,关键是掌握三角形任意两边之和大于第三边,三角形的任意两边差小于第三边.3、75【解析】【分析】根据平行线的性质求出∠BDC,求出∠FDE,根据三角形内角和定理求出即可.【详解】解:连接AC,如图:∵AB∥CD,∴∠BAC+∠DCA=180°,∵∠BAF=130°,∠DCE=125°,∴(∠CAF+∠ACE)+(∠BAC+∠DCA)=130°+125°=255°,∴∠CAF+∠ACE=255°-(∠BAC+∠DCA)=255°+180°=75°,∵∠CEF是△ACE外角,∴∠CEF=∠CAF+∠ACE=75°.故答案为:75.【点睛】本题主要考查了平行线的性质.解题的关键是掌握平行线的性质:两直线平行,同旁内角互补.4、【解析】【分析】首先利用三角形的三边关系得出,然后根据求绝对值的法则进行化简即可.【详解】解:∵是的三条边,∴,∴=.故答案为:.【点睛】熟悉三角形的三边关系和求绝对值的法则,是解题的关键,注意,去绝对值后,要先添加括号,再去括号,这样不容易出错.|a+b-c|+|b-a-c|5、85【解析】【分析】利用旋转的性质得出旋转前后对应线段相等、对应角相等即可.【详解】解:∵将△ABC绕点B逆时针旋转95°,∴∠ABE=95°,AB=BE,∠CAB=∠E,∵AB=BE,∴∠E=∠BAE,∴∠BAE+∠CAB=∠BAE+∠E=180°−∠ABE=180°−95°=85°,故答案为:85.【点睛】本题主要考查了旋转的性质以及三角形内角和定理的应用,熟记旋转的性质是解决问题的关键.三、解答题1、(1);(2);(3).【解析】【分析】(1)直接根据三角形三边关系进行解答即可;(2)根据三角形中线将△ABD与△ACD的周长之差转换为和的差即可得出答案;(3)设AC边上的高为,根据三角形面积公式列出方程求解即可.【详解】解:(1)∵△ABC中AB=5,AC=3,∴,即,故答案为:;(2)∵△ABD的周长为,△ACD的周长为,∵AD是△ABC的边BC上的中线,∴,∴-()=,故答案为:;(3)设AC边上的高为,根据题意得:,即,解得.【点睛】本题考查了三角形三边关系,三角形的中线,三角形的高等知识点,熟练掌握基础知识是解本题的关键.2、合格,理由见解析【解析】【分析】延长,相交于点F,延长,相交于点E,然后根据三角形内角和定理求解即可.【详解】解:如图,延长,相交于点F,延长,相交于点E,∵, ∴, ∵, ∴, ∴这块模板是合格的.【点睛】本题主要考查了三角形内角和定理,解题的关键在于能够熟练掌握三角形内角和定理.3、.【解析】【分析】先由直角三角形两锐角互余得到∠B=40°,在三角形△ABC 中,由内角和定理求得∠BAE=30°,由角平分线定义得出 ∠BAC=60°,即可求得∠ACD .【详解】解:为的高,..在中,.为的角平分线,..【点睛】此题考查三角形内角和定理、角平分线定义和直角三角形两锐角互余等,掌握定义和定理是解答此题的关键.4、55°【解析】【分析】先根据三角形内角和定理及角平分线的性质求出∠BAD度数,由AE⊥BE可求出∠AEB=90°,再由三角形的内角和定理即可解答.【详解】解:∵∠ABC=30°,∠C=80°,∴∠BAC=180°-30°-80°=70°,∵AD是∠BAC的平分线,∴∠BAD=×70°=35°,∵AE⊥BE,∴∠AEB=90°,∴∠ABE=180°-∠AEB-∠BAE=180°-90°-35°=55°.【点睛】本题考查的是角平分线的定义,高的定义及三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.5、(1);(2);(3);(4)存在一组边互相平行;或或或或.【解析】【分析】(1)根据垂直的性质结合图形求解即可;(2)根据垂直的性质及各角之间的关系即可得出;(3)由(2)可得,根据图中角度关系可得,将其代入即可得;(4)根据题意,分五种情况进行分类讨论:①当时;②当时;③当时;④当时;⑤当时;分别利用平行线的性质进行求解即可得.【详解】解:(1)∵,∴,∵,∴,故答案为:;(2)∵,,∴,,即,,∴,故答案为:;(3)由(2)得:,∴,由图可知:,∴,故答案为:;(4)①如图所示:当时,,由(2)可知:;②如图所示:当时,;③如图所示:当时,,∴;④如图所示:当时,,∴;⑤如图所示:当时,延长AC交BE于点F,∴,∵,∴,∴;综合可得:的度数为:或或或或,故答案为:或或或或.【点睛】题目主要考查垂直的性质、各角之间的计算、平行线的性质等,熟练掌握平行线的性质进行分类讨论是解题关键.
相关试卷
这是一份冀教版七年级下册第九章 三角形综合与测试课后练习题,共22页。试卷主要包含了下列各图中,有△ABC的高的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试单元测试课时训练,共23页。试卷主要包含了如图,已知,,,则的度数为等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试练习,共20页。试卷主要包含了已知△ABC的内角分别为∠A等内容,欢迎下载使用。