初中第九章 三角形综合与测试复习练习题
展开
这是一份初中第九章 三角形综合与测试复习练习题,共24页。试卷主要包含了如图,直线l1l2,被直线l3等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列长度的三条线段能组成三角形的是( )A.1,6,6 B.2,3,5 C.3,4,8 D.5,6,112、如果一个三角形的两边长都是6cm,则第三边的长不能是( )A.3cm B.6cm C.9cm D.13cm3、下列四个图形中,线段BE是△ABC的高的是( )A. B.C. D.4、已知的三边长分别为a,b,c,则a,b,c的值可能分别是( )A.1,2,3 B.3,4,7C.2,3,4 D.4,5,105、人字梯中间一般会设计一“拉杆”,这样做的道理是( )A.两点之间线段最短 B.三角形的稳定性C.两点确定一条直线 D.垂线段最短6、如图,将一个含有30°角的直角三角板放置在两条平行线a,b上,若,则的度数为( )A.85° B.75° C.55° D.95°7、如图,直线l1l2,被直线l3、l4所截,并且l3⊥l4,∠1=46°,则∠2等于( )A.56° B.34° C.44° D.46°8、三个等边三角形的摆放位置如图所示,若,则的度数为 A. B. C. D.9、若一个三角形的两边长分别为3和8,则第三边长可能是 ( )A.4 B.5 C.8 D.1110、如图,AD,BE,CF是△ABC的三条中线,则下列结论正确的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在面积为48的等腰中,,,P是BC边上的动点,点P关于直线AB、AC的对称点外别为M、N,则线段MN的最大值为______.2、如图,在直线l1∥l2,把三角板的直角顶点放在直线l2上,三角板中60°的角在直线l1与l2之间,如果∠1=35°,那么∠2=___度. 3、如图,在△ABC中,∠C=90°,AD是BC边上的中线,交BC于点D,CD=5cm,AC=12cm,则△ABD的面积是__________cm2.4、已知a,b,c是的三条边长,化简的结果为_______.5、如图,三角形ABC的面积为1,,E为AC的中点,AD与BE相交于P,那么四边形PDCE的面积为______.三、解答题(5小题,每小题10分,共计50分)1、已知射线是的外角平分线.(1)如图1,当射线与的延长线能交于一点时,则 (选填“>”“<”或“=”),并说明理由;(2)如图2,当时,请判断与的数量关系,并证明.2、将一副三角板中的两块直角三角尺的直角顶点C按如图1方式叠放在一起,其中,.(1)若,则的度数为_______;(2)直接写出与的数量关系:_________;(3)直接写出与的数量关系:__________;(4)如图2,当且点E在直线的上方时,将三角尺固定不动,改变三角尺的位置,但始终保持两个三角尺的顶点C重合,这两块三角尺是否存在一组边互相平行?请直接写出角度所有可能的值___________.3、如图,在△ABC中,AD平分∠BAC,P为线段AD上一点,PE⊥AD交BC的延长线于点E,若∠B=35°,∠ACB=75°,求∠E的度数.4、如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.5、如图,Rt△ABC中,,D、E分别是AB、AC上的点,且.求证:ED⊥AB -参考答案-一、单选题1、A【解析】【分析】根据构成三角形的条件逐项分析判断即可.三角形的任意两边之和大于第三边,任意两边之差小于第三边,根据原理分别计算两条较短边的和与最长边比较,再逐一分析即可.【详解】解:A. 1+6>6,能组成三角形,故该选项正确,符合题意;B. 2+3=5,不能组成三角形,故该选项不正确,不符合题意; C. 3+4<8,不能组成三角形,故该选项不正确,不符合题意; D. 5+6=11,不能组成三角形,故该选项不正确,不符合题意;故选A【点睛】本题考查了判断构成三角形的条件,解题的关键是掌握构成三角形的条件.2、D【解析】【分析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”,这样就可求出第三边长的范围,进而选出答案【详解】解:设它的第三条边的长度为xcm,依题意有 ,即,故只有D符合题意,故选:D.【点睛】本题考查的是三角形的三边关系,掌握三角形三边关系:三角形两边之和大于第三边、三角形的两边差小于第三边是解题的关键.3、D【解析】【分析】根据三角形高的画法知,过点作边上的高,垂足为,其中线段是的高,再结合图形进行判断.【详解】解:线段是的高的图是选项.故选:D.【点睛】本题主要考查了三角形的高,解题的关键是掌握三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.4、C【解析】【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.【详解】解:A、1+2=3,不能组成三角形,不符合题意;B、3+4=7,不能组成三角形,不符合题意;C、2+3>4,能组成三角形,符合题意;D、4+5<10,不能组成三角形,不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.5、B【解析】【分析】首先要考虑梯子中间设置“拉杆”的原因,是为了让梯子更加稳固,而更加稳固的原因是“拉杆”与梯子两边形成了三角形.【详解】人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加梯子的稳定性.故选:B.【点睛】本题考查三角形的稳定性,善于从生活中发现数学原理是解决本题的关键.6、A【解析】【分析】由平行线的性质,得,然后由三角形外角的性质,即可求出答案.【详解】解:由题意,如图,∵,∴,∵,∴;故选:A【点睛】本题考查了三角形的外角性质,平行线的性质,解题的关键是掌握所学的知识,正确求出.7、C【解析】【分析】依据l1∥l2,即可得到∠3=∠1=46°,再根据l3⊥l4,可得∠2=90°﹣46°=44°.【详解】解:如图:∵l1∥l2,∠1=46°,∴∠3=∠1=46°,又∵l3⊥l4,∴∠2=90°﹣46°=44°,故选:C.【点睛】本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180°.8、A【解析】【分析】利用三个平角的和减去中间三角形的内角和,再减去三个的角即可.【详解】解:,,,,,,故选:.【点睛】本题主要考查了三角形的内角和定理,灵活运用三角形内角和定理成为解答本题的关键.9、C【解析】【分析】直接利用三角形三边关系得出第三边的取值范围,进而得出答案.【详解】解:∵一个三角形的两边长分别为3和8,∴5<第三边长<11,则第三边长可能是:8.故选:C.【点睛】此题主要考查了三角形的三边关系,正确得出第三边的取值范围是解题关键.10、B【解析】【分析】根据三角形的中线的定义判断即可.【详解】解:∵AD、BE、CF是△ABC的三条中线,∴AE=EC=AC,AB=2BF=2AF,BC=2BD=2DC,故A、C、D都不一定正确;B正确.故选:B.【点睛】本题考查了三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线.二、填空题1、19.2【解析】【分析】点P关于直线AB、AC的对称点分别为M、N,根据三角形三边关系可得,当点P与点B或点C重合时,P、M、N三点共线,MN最长,由轴对称可得,,再由三角形等面积法即可确定MN长度.【详解】解:如图所示:点P关于直线AB、AC的对称点分别为M、N,由图可得:,当点P与点B或点C重合时,如图所示,MN交AC于点F,此时P、M、N三点共线, MN最长,∴,,∵等腰面积为48,,∴,,∴,故答案为:.【点睛】题目主要考查对称点的性质及三角形三边关系,三角形等面积法等,理解题意,根据图形得出三点共线时线段最长是解题关键.2、65【解析】【分析】根据三角形外角性质即可求得∠3的度数,再依据平行线的性质,可求得∠3=∠2.【详解】解:∵∠3是△ABC的外角,∠1=∠ABC=35°,∴∠3=∠C+∠ABC=30°+35°=65°,∵直线l1∥l2,∴∠2=∠3=65°,故答案为:65.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.3、30【解析】【分析】根据三角形的面积公式求出△ACD的面积,利用三角形中线的性质即可求解.【详解】解:∵∠C=90°,CD=5cm,AC=12cm,∴△ACD的面积为(cm2),∵AD是BC边上的中线,∴△ACD的面积=△ABD的面积为(cm2),故答案为:30.【点睛】本题考查了三角形的面积和三角形中线的性质,关键是根据三角形的中线把三角形分成面积相等的两部分解答.4、2b【解析】【分析】由题意根据三角形三边关系得到a+b-c>0,b-a-c<0,再去绝对值,合并同类项即可求解.【详解】解:∵a,b,c是的三条边长,∴a+b-c>0,a-b-c<0,∴|a+b-c|+|a-b-c|=a+b-c-a+b+c=2b.故答案为:2b.【点睛】本题考查的是三角形的三边关系以及去绝对值和整式加减运算,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.5、【解析】【分析】连接CP.设△CPE的面积是x,△CDP的面积是y.根据BD:DC=2:1,E为AC的中点,得△BDP的面积是2y,△APE的面积是x,进而得到△ABP的面积是4x.再根据△ABE的面积是△BCE的面积相等,得4x+x=2y+x+y,解得,再根据△ABC的面积是1即可求得x、y的值,从而求解.【详解】解:连接CP, 设△CPE的面积是x,△CDP的面积是y. ∵BD:DC=2:1,E为AC的中点, ∴△BDP的面积是2y,△APE的面积是x, ∵BD:DC=2:1,CE:AC=1:2, ∴△ABP的面积是4x. ∴4x+x=2y+x+y, 解得. 又∵4x+x=, 解得:x=,则 则四边形PDCE的面积为x+y=. 故答案为:.【点睛】本题能够根据三角形的面积公式求得三角形的面积之间的关系.等高的两个三角形的面积比等于它们的底的比;等底的两个三角形的面积比等于它们的高的比.三、解答题1、(1)>,见解析;(2)∠BAC=∠B,见解析【解析】【分析】(1)延长BA与射线CD交于点F,根据CD平分∠ACE,可得∠ACD=∠ECD,根据三角形外角性质可得∠BAC=∠ECD+∠AFC,∠ECD=∠B+∠AFC,得出∠BAC=∠B+2∠AFC即可;(2)根据CD∥BA,可得∠BAC=∠ACD,∠B=∠ECD,根据CD平分∠ACE,解得∠ACD=∠ECD即可.【详解】解:(1)>理由:如图,延长BA与射线CD交于点F,∵CD平分∠ACE,∴∠ACD=∠ECD,∵∠BAC=∠ACD+∠AFC=∠ECD+∠AFC,∠ECD=∠B+∠AFC,∴∠BAC=∠B+2∠AFC,∴∠BAC>∠B;(2)∠BAC=∠B,证明:∵CD∥BA,∴∠BAC=∠ACD,∠B=∠ECD,∵CD平分∠ACE,∴∠ACD=∠ECD,∴∠BAC=∠B.【点睛】本题考查三角形的外角性质,角平分线定义,掌握三角形的外角性质,角平分线定义是解题关键.2、(1);(2);(3);(4)存在一组边互相平行;或或或或.【解析】【分析】(1)根据垂直的性质结合图形求解即可;(2)根据垂直的性质及各角之间的关系即可得出;(3)由(2)可得,根据图中角度关系可得,将其代入即可得;(4)根据题意,分五种情况进行分类讨论:①当时;②当时;③当时;④当时;⑤当时;分别利用平行线的性质进行求解即可得.【详解】解:(1)∵,∴,∵,∴,故答案为:;(2)∵,,∴,,即,,∴,故答案为:;(3)由(2)得:,∴,由图可知:,∴,故答案为:;(4)①如图所示:当时,,由(2)可知:;②如图所示:当时,;③如图所示:当时,,∴;④如图所示:当时,,∴;⑤如图所示:当时,延长AC交BE于点F,∴,∵,∴,∴;综合可得:的度数为:或或或或,故答案为:或或或或.【点睛】题目主要考查垂直的性质、各角之间的计算、平行线的性质等,熟练掌握平行线的性质进行分类讨论是解题关键.3、【解析】【分析】根据三角形内角和的性质求得的度数,再根据角平分线求得的度数,利用三角形外角性质求得的度数,从而求得的度数.【详解】解:∵,,∴,∵AD平分∠BAC,∴,∴,∵PE⊥AD,∴,∴.【点睛】此题考查了三角形内角和的性质,三角形外角的性质以及角平分线的性质,解题的关键是灵活利用相关性质进行求解.4、见解析【解析】【分析】连接,,再根据三角形的三边关系即可得出结论.【详解】连接,,,,.当且仅当CD过圆心O时,取“=”号,.【点睛】本题考查的是三角形的三边关系,解题的关键是熟知三角形任意两边之和大于第三边.5、见解析【解析】【分析】根据三角形内角和定理可得,从而可得结论.【详解】解:在中,,在中, ∵ ∴ ∴ED⊥AB【点睛】本题主要考查了垂直的判定,证明是解答本题的关键.
相关试卷
这是一份冀教版七年级下册第九章 三角形综合与测试课后测评,共24页。试卷主要包含了下列图形中,不具有稳定性的是,如图,在中,若点使得,则是的等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试同步达标检测题,共21页。试卷主要包含了如图,图形中的的值是,如图,,如图,点B等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试当堂检测题,共20页。试卷主要包含了若三角形的两边a等内容,欢迎下载使用。