数学七年级下册第九章 三角形综合与测试精练
展开
这是一份数学七年级下册第九章 三角形综合与测试精练,共19页。试卷主要包含了下列各图中,有△ABC的高的是,三角形的外角和是,如图,已知,,,则的度数为等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是( )A.两点确定一条直线B.两点之间,线段最短C.三角形具有稳定性D.三角形的任意两边之和大于第三边2、如图,已知为的外角,,,那么的度数是( )A.30° B.40° C.50° D.60°3、如图,将一个含有30°角的直角三角板放置在两条平行线a,b上,若,则的度数为( )A.85° B.75° C.55° D.95°4、下列各图中,有△ABC的高的是( )A. B.C. D.5、如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是( )A.BE是△ABD的中线 B.BD是△BCE的角平分线C.∠1=∠2=∠3 D.S△AEB=S△EDB6、三角形的外角和是( )A.60° B.90° C.180° D.360°7、若一个三角形的两条边的长为5和7,那么第三边的长可能是( )A.2 B.10 C.12 D.138、在△ABC中,∠A=∠B=∠C,则∠C=( )A.70° B.80° C.100° D.120°9、如图,已知,,,则的度数为( )A.155° B.125° C.135° D.145°10、如图,在△ABC中,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,∠D=15°,则∠A的度数为( )A.30° B.45° C.20° D.22.5°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在直线l1∥l2,把三角板的直角顶点放在直线l2上,三角板中60°的角在直线l1与l2之间,如果∠1=35°,那么∠2=___度. 2、如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,设∠A=.则∠A1=_______(用含的式子表示).3、一个三角形的两边长分别为2和5,则第三边的长度可取的整数值为_________(写出一个即可).4、如图,AB=DE,AC=DF,BF=CE,点B、F、C、E在一条直线上,AB=4,EF=6,求△ABC中AC边的取值范围.5、在中,若,则_______.三、解答题(5小题,每小题10分,共计50分)1、如图,已知△ABC的高AD和角平分线AE,∠B=26°,∠ACD=56°,求(1)∠CAD的度数;(2)∠AED的度数.2、如图,AD是∠BAC的平分线,CE是△ADC边AD上的高,若∠BAC=80°,∠ECD=25°,求∠ACB的度数.3、如图,ABCD,∠BAC的角平分线AP与∠ACD的角平分线CP相交于点P,求证:AP⊥CP.4、用无刻度的直尺作图,保留作图痕迹. (1)在图1中,BD是△ABC的角平分线,作△ABC的平分内角∠BCA的角平分线;(2)在图2中,AD是∠BAC的角平分线,作△ABC的∠BCA相邻的外角的角平分线. 5、如图,BD是的角平分线,BE是的AC边上的中线.(1)若的周长为13,,,求AB的长.(2)若,,求的度数. -参考答案-一、单选题1、C【解析】【分析】根据三角形具有稳定性进行求解即可.【详解】解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,故选C.【点睛】本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.2、B【解析】【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD−∠B=60°−20°=40°,故选:B.【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.3、A【解析】【分析】由平行线的性质,得,然后由三角形外角的性质,即可求出答案.【详解】解:由题意,如图,∵,∴,∵,∴;故选:A【点睛】本题考查了三角形的外角性质,平行线的性质,解题的关键是掌握所学的知识,正确求出.4、B【解析】【分析】利用三角形的高的定义可得答案.【详解】解:∵选项B是过顶点C作的AB边上的高,∴有△ABC的高的是选项B,故选:B.【点睛】此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.5、C【解析】【分析】根据三角形中线、角平分线的定义逐项判断即可求解.【详解】解:A、∵AE=DE,∴BE是△ABD的中线,故本选项不符合题意;B、∵BD平分∠EBC,∴BD是△BCE的角平分线,故本选项不符合题意;C、∵BD平分∠EBC,∴∠2=∠3,但不能推出∠2、∠3和∠1相等,故本选项符合题意;D、∵S△AEB=×AE×BC,S△EDB=×DE×BC,AE=DE,∴S△AEB=S△EDB,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形中线、角平分线的定义,熟练掌握三角形中,连接一个顶点和它的对边的中点的线段叫做三角形的中线;三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫三角形的角平分线是解题的关键.6、D【解析】【分析】根据三角形的内角和定理、邻补角的性质即可得.【详解】解:如图,,,又,,即三角形的外角和是,故选:D.【点睛】本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键.7、B【解析】【分析】根据在三角形中三边关系可求第三边长的范围,再选出答案.【详解】解:设第三边长为x,则由三角形三边关系定理得7-5<x<7+5,即2<x<12.只有选项B符合题意,故选:B.【点睛】本题考查了三角形三边关系,掌握三角形的三边关系是解题的关键.三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边.8、D【解析】【分析】根据三角形的内角和,①,进而根据已知条件,将代入①即可求得【详解】解:∵在△ABC中,,∠A=∠B=∠C,∴解得故选D【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.9、B【解析】【分析】根据三角形外角的性质得出,再求即可.【详解】解:∵,∴,∵,∴,∴;故选:B.【点睛】本题考查了三角形外角的性质,解题关键是准确识图,理清角之间的关系.10、A【解析】【分析】由三角形的外角的性质可得再结合角平分线的性质进行等量代换可得从而可得答案.【详解】解: ∠ABC与∠ACE的平分线相交于点D, 故选A【点睛】本题考查的是三角形的角平分线的性质,三角形的外角的性质,熟练的利用三角形的外角的性质结合等量代换得到是解本题的关键.二、填空题1、65【解析】【分析】根据三角形外角性质即可求得∠3的度数,再依据平行线的性质,可求得∠3=∠2.【详解】解:∵∠3是△ABC的外角,∠1=∠ABC=35°,∴∠3=∠C+∠ABC=30°+35°=65°,∵直线l1∥l2,∴∠2=∠3=65°,故答案为:65.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.2、【解析】【分析】根据角平分线的定义、三角形的外角的性质计算即可.【详解】∵∠ABC与∠ACD的平分线交于A1点,∴∠A1BC=∠ABC,∠A1CD=∠ACD,∵∠A=∠ACD-∠ABC=∴∠A1=∠A1CD-∠A1BC=(∠ACD-∠ABC)=∠A=,故答案为:.【点睛】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.3、4,5,6(写出一个即可)【解析】【分析】由构成三角形三边成立的条件可得第三条边的取值范围.【详解】设第三条长为x∵2+5=7,5-2=3∴3<x<7.故第三条边的整数值有4、5、6.故答案为:4,5,6(写出一个即可)【点睛】本题考查了构成三角形的三边关系,任意两边之和大于第三边,任意两边之差小于第三边,关键为“任意”两边均满足此关系.4、2<AC<10【解析】【分析】由BF=CE得到 BC=EF=6,再根据三角形三边关系求解即可.【详解】解:∵BF=CE,点B、F、C、E在一条直线上,∴BF+FC=CE+FC,∴BC=EF=6,∵AB=4,∴6-4<AC<6+4,即2<AC<10,∴AC边的取值范围为2<AC<10.【点睛】本题考查三角形的三边关系,熟知一个三角形任意两边之和大于第三边,任意两边之差小于第三边是解答的关键.5、65°##65度【解析】【分析】由三角形的内角和定理,得到,即可得到答案;【详解】解:在中,,∵,∴,∴;故答案为:65°.【点睛】本题考查了三角形的内角和定理,解题的关键是掌握三角形的内角和等于360°.三、解答题1、 (1)34°(2)41°【解析】【分析】(1)根据三角形内角和可得的度数;(2)先根据三角形外角性质计算出,再根据角平分线定义得到,接着再利用三角形外角性质得到.(1)解:在中,,,;(2)解:在中,,,平分,,.【点睛】本题考查角形内角和定理,解题的关键是掌握三角形内角和是,合理使用三角形外角性质计算角度.2、75°【解析】【分析】根据角平分线的定义求出∠DAC的度数,所以EDCA可求,进而求出∠ACB的度数.【详解】解:∵AD是∠BAC的平分线,∠BAC=80°,∴∠DAC=40°,∵CE是△ADC边AD上的高,∴∠ACE=90°﹣40°=50°,∵∠ECD=25°∴∠ACB=50°+25°=75°.【点睛】本题主要考查了三角形的内角和定理.解题的关键是掌握三角形的内角和定理以及角平分线的性质.3、见解析【解析】【分析】利用角平分线的性质及平行线的性质,通过等量代换能证明出,即可证明AP⊥CP.【详解】证明:∵ABCD(已知),∴∠BAC+∠ACD=180°(两直线平行,同旁内角互补),∵AP、CP分别平分∠BAC、∠ACD(已知),∴∠CAP=∠BAC,∠ACP=∠ACD,∴∠CAP+∠ACP=∠BAC+∠ACD=(∠BAC+∠ACD)=90°,又∵∠CAP+∠ACP+∠P=180°,∴∠P=90°,∴AP⊥CP.【点睛】本题考查了角平分线的性质、平行线的性质,解题的关键是掌握角平分线的性质进行求解.4、(1)见解析;(2)见解析.【解析】【分析】(1)作∠BAC的平分线交BD于点O,作射线CO交AB于E,线段CE即为所求;(2)作△ABC的∠ABC的外角的平分线交AD与D,作射线CD,射线CD即为所求.【详解】(1)如图1,线段CE为所求; (2)如图2,线段CD为所求. 【点睛】本题主要考查了基本作图、三角形的外角、三角形的角平分线等知识点,理解三角形的内角平分线交于一点成为解答本题的关键.5、(1)3;(2).【解析】【分析】(1)首先根据中线的性质得到,然后根据的周长为13,即可求出AB的长;(2)首先根据BD是的角平分线得到,然后根据三角形内角和定理即可求出的度数.【详解】(1)∵BE是的AC边上的中线,∴,又∵的周长为13,∴;(2)∵BD是的角平分线,∴,又∵,∴.【点睛】此题考查三角形中线和角平分线的概念,三角形内角和定理的运用,解题的关键是熟练掌握三角形中线和角平分线的概念,三角形内角和定理.
相关试卷
这是一份冀教版七年级下册第九章 三角形综合与测试课后作业题,共20页。
这是一份冀教版七年级下册第九章 三角形综合与测试综合训练题,共24页。试卷主要包含了已知△ABC的内角分别为∠A,如图,点D,如图,,下列图形中,不具有稳定性的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第九章 三角形综合与测试练习,共23页。试卷主要包含了如图,点D,下列各图中,有△ABC的高的是等内容,欢迎下载使用。