终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新精品解析冀教版七年级数学下册第九章 三角形专项练习试卷(含答案详解)

    立即下载
    加入资料篮
    2022年最新精品解析冀教版七年级数学下册第九章 三角形专项练习试卷(含答案详解)第1页
    2022年最新精品解析冀教版七年级数学下册第九章 三角形专项练习试卷(含答案详解)第2页
    2022年最新精品解析冀教版七年级数学下册第九章 三角形专项练习试卷(含答案详解)第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第九章 三角形综合与测试随堂练习题

    展开

    这是一份2021学年第九章 三角形综合与测试随堂练习题,共23页。试卷主要包含了如图,,,,则的度数是等内容,欢迎下载使用。
    冀教版七年级数学下册第九章 三角形专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、BP∠ABC的平分线,CP∠ACB的邻补角的平分线,∠ABP=20°,∠ACP=50°,则∠P=(        A.30° B.40° C.50° D.60°2、将一张正方形纸片ABCD按如图所示的方式折叠,CECF为折痕,点BD折叠后的对应点分别为B'、D',若∠ECF=21°,则∠B'CD'的度数为(  )A.35° B.42° C.45° D.48°3、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是(       A.3cm B.6cm C.10cm D.12cm4、如图,一扇窗户打开后,用窗钩AB可将其固定(  )A.三角形的稳定性B.两点之间线段最短C.四边形的不稳定性D.三角形两边之和大于第三边5、在ABC中,∠A=∠BC,则∠C=(  )A.70° B.80° C.100° D.120°6、如图,,则的度数是(       A.10° B.15° C.20° D.25°7、下列长度的三条线段能组成三角形的是(       A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,78、两个直角三角板如图摆放,其中∠BAC=∠EDF=90°,∠F=45°,∠B=60°,ACDE交于点M.若BCEF,则∠DMC的大小为(  )A.100° B.105° C.115° D.120°9、下列长度的三条线段能组成三角形的是(       A.3,4,7 B.3,4,8 C.3,4,5 D.3,3,710、三角形的外角和是(  )A.60° B.90° C.180° D.360°第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、定义:当三角形中一个内角α是另一个内角的两倍时,我们称此三角形为“倍角三角形”,其中α称为“倍角”,如果一个“倍角三角形”的一个内角为99°,那么倍角α的度数是_____.2、已知ABC中,AB=5,AC=7,BCa,则a的取值范围是 ___.3、如图,E为△ABCBC边上一点,点DBA的延长线上,DEAC于点F,∠B=46°,∠C=30°,∠EFC=70°,则∠D=______.4、在ABC中,ADBC于点DBDCD,若BC=6,AD=4,则图中阴影部分的面积为__________.5、在中,,那么是______三角形.(填“锐角”、“钝角”或“直角” )三、解答题(5小题,每小题10分,共计50分)1、(1)如图所示,直角三角板和直尺如图放置.若,试求出的度数.(2)已知ABC的三边长abc,化简2、如图:已知ABCDBD平分∠ABCAC平分∠BCD,求∠BOC的度数.ABCD(已知),∴∠ABC+       =180°(       ).BD平分∠ABCAC平分∠BCD,(已知),∴∠DBCABC,∠ACBBCD(角平分线的意义).∴∠DBC+∠ACB       )(等式性质),即∠DBC+∠ACB       °.∵∠DBC+∠ACB+∠BOC=180°(       ),∴∠BOC       °(等式性质).3、如图,RtABC中,DE分别是ABAC上的点,且.求证:EDAB4、已知:如图,点BC在线段AD的异侧,点EF分别是线段ABCD上的点,∠AEG=∠AGE,∠C=∠DGC(1)求证:AB//CD(2)若∠AGE+∠AHF=180°,求证:∠B=∠C(3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.5、(1)如图,AB//CDCF平分∠DCE,若∠DCF=30°,∠E=20°,求∠ABE的度数;(2)如图,AB//CD,∠EBF=2∠ABFCF平分∠DCE,若∠F的2倍与∠E的补角的和为190°,求∠ABE的度数.(3)如图,P为(2)中射线BE上一点,GCD上任一点,PQ平分∠BPGGN//PQGM平分∠DGP,若∠B=30°,求∠MGN的度数. -参考答案-一、单选题1、A【解析】【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.【详解】BPABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCMBCP的外角,∴∠P=∠PCMCBP=50°20°=30°,故选:A.【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.2、D【解析】【分析】可以设∠ECB'=α,∠FCD'=β,根据折叠可得∠DCE=∠D'CE,∠BCF=∠B'CF,进而可求解.【详解】解:设∠ECB'=α,∠FCD'=β根据折叠可知:DCE=∠D'CE,∠BCF=∠B'CF∵∠ECF=21°,∴∠D'CE=21°+β,∠B'CF=21°+α∵四边形ABCD是正方形,∴∠BCD=90°,∴∠D'CE+∠ECF+∠B'CF=90°∴21°+β+21°+21°+α=90°,αβ=27°,∴∠B'CD'=∠ECB'+∠ECF+∠FCD'=α+21°+β=21°+27°=48°则∠B'CD'的度数为48°.故选:D【点睛】本题考查了正方形与折叠问题,解决本题的关键是熟练运用折叠的性质.3、C【解析】【分析】设第三根木棒的长度为cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.【详解】解:设第三根木棒的长度为cm,则 所以A,B,D不符合题意,C符合题意,故选C【点睛】本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.4、A【解析】【分析】由三角形的稳定性即可得出答案.【详解】一扇窗户打开后,用窗钩AB可将其固定,故选:A.【点睛】本题考查了三角形的稳定性,加上窗钩AB构成了△AOB,而三角形具有稳定性是解题的关键.5、D【解析】【分析】根据三角形的内角和,①,进而根据已知条件,将代入①即可求得【详解】解:∵在ABC中,,∠A=∠BC解得故选D【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.6、B【解析】【分析】根据平行线的性质求出关于∠DOE,然后根据外角的性质求解.【详解】解:∵ABCD,∠A45°,∴∠A=∠DOE45°,∵∠DOE=∠C+E又∵∴∠E=∠DOE-∠C15°.故选:B【点睛】本题比较简单,考查的是平行线的性质及三角形内角与外角的关系.掌握两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和是解题关键.7、C【解析】【分析】根据三角形的三边关系,逐项判断即可求解.【详解】解:A、因为 ,所以不能组成三角形,故本选项不符合题意;B、因为 ,所以不能组成三角形,故本选项不符合题意;C、因为 ,所以能组成三角形,故本选项符合题意;D、因为 ,所以不能组成三角形,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.8、B【解析】【分析】首先根据直角三角形两锐角互余可算出∠C和∠E的度数,再由“两直线平行,内错角相等”,可求出∠MDC的度数,在△CMD中,利用三角形内角和可求出∠CMD的度数.【详解】解:在△ABC和△DEF中,​​​​​​​∠BAC=∠EDF=90°,∠F=45°,∠B=60°,∴∠C=90°-∠B=30°,E=90°-∠F=45°,BCEF∴∠MDC=∠E=45°,在△CMD中,∠CMD=180°-∠C-∠MDC=105°.故选:B.【点睛】本题主要考查三角形内角和,平行线的性质等内容,根据图形,结合定理求出每个角的度数是解题关键.9、C【解析】【分析】根据组成三角形的三边关系依次判断即可.【详解】A、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误.B、 3,4,8中3+4<8,故不能组成三角形,与题意不符,选项错误.C、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确.D、 3,3,7中3+3<7,故不能组成三角形,与题意不符,选项错误.故选:C.【点睛】本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.10、D【解析】【分析】根据三角形的内角和定理、邻补角的性质即可得.【详解】解:如图,即三角形的外角和是故选:D.【点睛】本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键.二、填空题1、【解析】【分析】根据新定义分三种情况:①当99°的内角是另一个角的两倍时,直接可得α的度数;②当一个内角α的两倍时,不符合三角形的内角和关系,舍去;③当三角形中另两个角是“倍角”关系时,列方程得到,求解即可.【详解】解:分三种情况:①当99°的内角是另一个角的两倍时,倍角α的度数是②当一个内角α的两倍时,则,不符合三角形的内角和关系,故舍去;③当三角形中另两个角是“倍角”关系时,得到,得α=故答案为:【点睛】此题考查了三角形的内角和定理,新定义计算,一元一次方程,正确理解新定义并列式计算是解题的关键.2、2<a<12【解析】【分析】直接利用三角形三边关系得出a的取值范围.【详解】解:∵△ABC中,AB=5,AC=7,BCa∴7﹣5<a<7+5,即2<a<12.故答案为:2<a<12.【点睛】本题考查了三角形的三边关系,做题的关键是掌握三角形中任意两边之和大于第三边,两边之差小于第三边.3、34°##34【解析】【分析】根据题意先求∠DAC,再依据△ADF三角形内角和180°可得答案.【详解】解:∵∠B=46°,∠C=30°,∴∠DAC=∠B+∠C=76°,∵∠EFC=70°,∴∠AFD=70°,∴∠D=180°-∠DAC-∠AFD=34°,故答案为:34°.【点睛】本题考查三角形内角和定理及三角形一个外角等于不相邻的两个内角的和,解题的关键是掌握三角形内角和定理.4、6【解析】【分析】如图,先标注字母,证明可得从而可得结论.【详解】解:如图,先标注字母, ADBC于点DBDCD   BC=6,AD=4, 故答案为:6【点睛】本题考查的是三角形的高,中线与面积的关系,掌握“三角形的中线把三角形的面积分为相等的两部分”是解本题的关键.5、钝角【解析】【分析】根据三角形按角的分类可得结论.【详解】解:在中,是钝角三角形,故答案为:钝角.【点睛】本题考查三角形的分类,熟知三角形按角分为锐角三角形、直角三角形和钝角三角形是解题关键.三、解答题1、(1)40°;(2)2b-2c【解析】【分析】(1)过FFHAB,则ABFHCD,根据平行线的性质即可得到结论;(2)先根据三角形三边关系判断出a+b-cb-a-c的符号,再把要求的式子进行化简,即可得出答案.【详解】(1)过点FFHABABCDFHABABCDFH∴∠1=∠3,∠2=∠4,∴∠EFG=∠3+∠4=∠1+∠2,∵∠G=90°,∠E=30°,∴∠EFG=90°-∠E=90°-30°=60°,即∠1+∠2=60°,∵∠1=20°,∴∠2=60°-∠1=60°-20°=40°;(2)∵△ABC的三边长分别是abca+bcb-aca+b-c>0,b-a-c<0,∴|a+b-c|-|b-a-c|=a+b-c-(-b+a+c)=a+b-c+b-a-c=2b-2c【点睛】本题考查了平行线的性质,三角形三边关系,用到的知识点是平行线的性质定理、三角形的三边关系、绝对值、整式的加减,关键是根据三角形的三边关系判断出a+b-cb-a-c的符号.2、BCD,两直线平行,同旁内角互补,∠ABC+BCD90,三角形内角和等于180°,90【解析】【分析】根据题意利用ABCD得∠ABC+∠BCD=180;等式的性质得∠DBC+∠ACB=(∠ABC+∠ACD),进而由三角形内角和为180°得∠BOC=90°.【详解】解:∵ABCD(已知),∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补),BD平分∠ABCAC平分∠BCD(已知),∴∠DBCABC,∠ACBBCD(角平分线定义),∴∠DBC+∠ACB(∠ABC+∠BCD)(等式性质),即∠DBC+∠ACB=90°,∴∠DBC+∠ACB+∠BOC=180°(三角形内角和等于180°),∴∠BOC=90°(等式性质),故答案为:∠BCD,两直线平行,同旁内角互补,∠ABC+∠BCD,90,三角形内角和等于180°,90.【点睛】本题考查平行线的性质,等式的性质,三角形内角和定理,角平分线的性质等,解题的关键是掌握相关性质的应用.3、见解析【解析】【分析】根据三角形内角和定理可得,从而可得结论.【详解】解:在中,中, EDAB【点睛】本题主要考查了垂直的判定,证明是解答本题的关键.4、(1)见解析;(2)见解析;(3)108°【解析】【分析】(1)根据对顶角相等结合已知条件得出∠AEG=∠C,根据内错角相等两直线平行即可证得结论;(2)由∠AGE+∠AHF=180°等量代换得∠DGC+∠AHF=180°可判断EC//BF,两直线平行同位角相等得出∠B=∠AEG,结合(1)得出结论;(3)由(2)证得EC//BF,得∠BFC+∠C=180°,求得∠C的度数,由三角形内角和定理求得∠D的度数.【详解】证明:(1)∵∠AEG=∠AGE,∠C=∠DGC,∠AGE=∠DGC∴∠AEG=∠C     AB//CD(2)∵∠AGE=∠DGC,∠AGE+∠AHF=180°∴∠DGC+∠AHF=180°EC//BF   ∴∠B=∠AEG由(1)得∠AEG=∠C     ∴∠B=∠C(3)由(2)得EC//BF∴∠BFC+∠C=180°∵∠BFC=4∠C     ∴∠C=36°     ∴∠DGC=36°∵∠C+∠DGC+∠D=180°     ∴∠D=108°【点睛】此题考查了平行线的判定与性质,三角形内角和定理,熟记“内错角相等,两直线平行”、“同旁内角互补,两直线平行”及“两直线平行,同旁内角互补”是解题的关键.5、(1)∠ABE=40°;(2)∠ABE=30°;(3)∠MGN=15°.【解析】【分析】(1)过EEMAB,根据平行线的判定与性质和角平分线的定义解答即可;(2)过EEMAB,过FFNAB,根据平行线的判定与性质,角平分线的定义以及解一元一次方程解答即可;(3)过PPLAB,根据平行线的判定与性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义解答即可.【详解】解:(1)过EEMABABCDCDEMAB∴∠ABE=∠BEM,∠DCE=∠CEMCF平分∠DCE∴∠DCE=2∠DCF∵∠DCF=30°,∴∠DCE=60°,∴∠CEM=60°,又∵∠CEB=20°,∴∠BEM=∠CEM﹣∠CEB=40°,∴∠ABE=40°;(2)过EEMAB,过FFNAB∵∠EBF=2∠ABF∴设∠ABFx,∠EBF=2x,则∠ABE=3xCF平分∠DCE∴设∠DCF=∠ECFy,则∠DCE=2yABCDEMABCD∴∠DCE=∠CEM=2y,∠BEM=∠ABE=3x∴∠CEB=∠CEM﹣∠BEM=2y﹣3x同理∠CFByx∵2∠CFB+(180°﹣∠CEB)=190°,∴2(yx)+180°﹣(2y﹣3x)=190°,   x=10°,∴∠ABE=3x=30°;(3)过PPLABGM平分∠DGP∴设∠DGM=∠PGMy,则∠DGP=2yPQ平分∠BPG∴设∠BPQ=∠GPQx,则∠BPG=2xPQGN∴∠PGN=∠GPQxABCDPLABCD   ∴∠GPL=∠DGP=2yBPL=∠ABP=30°,∵∠BPL=∠GPL﹣∠BPG∴30°=2y﹣2xyx=15°,∵∠MGN=∠PGM﹣∠PGNyx∴∠MGN=15°.【点睛】此题考查平行线的判定与性质,角平分线的定义,三角形的内角和定理,解题关键在于作辅助线和掌握判定定理. 

    相关试卷

    2020-2021学年第九章 三角形综合与测试课后复习题:

    这是一份2020-2021学年第九章 三角形综合与测试课后复习题,共21页。试卷主要包含了下列各图中,有△ABC的高的是等内容,欢迎下载使用。

    七年级下册第九章 三角形综合与测试同步训练题:

    这是一份七年级下册第九章 三角形综合与测试同步训练题,共25页。

    初中数学冀教版七年级下册第九章 三角形综合与测试精练:

    这是一份初中数学冀教版七年级下册第九章 三角形综合与测试精练,共21页。试卷主要包含了如图,是的中线,,则的长为,如图,在中,若点使得,则是的,若一个三角形的三个外角之比为3等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map