2021学年第十章 一元一次不等式和一元一次不等式组综合与测试精练
展开
这是一份2021学年第十章 一元一次不等式和一元一次不等式组综合与测试精练,共15页。
第十章一元一次不等式和一元一次不等式组专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组有解,则符合条件的整数k的值之和为( )A.5 B.4 C.3 D.22、某矿泉水每瓶售价1.5元,现甲、乙两家商场 给出优 惠政策:甲商场全部9折,乙商场20瓶以上的部分8折.老师要小明去买一些矿泉水,小明想了想觉得到乙商场购买比较优惠.则小明需要购买的矿泉水的数量x的取值范围是( )A.x>20 B.x>40 C.x≥40 D.x<403、不等式组有两个整数解,则的取值范围为( )A. B. C. D.4、在数轴上表示不等式3x>5的解集,正确的是( )A. B.C. D.5、已知三条线段的长分别是4,4,m,若它们能构成三角形,则整数m的最大值是( )A.10 B.8 C.7 D.46、已知a,b都是实数,且a<b,则下列不等式的变形正确的是( )A.a﹣1>b﹣1 B.﹣a+2<﹣b+2 C.3a<3b D.7、关于x的一元一次不等式的解集在数轴上表示为( )A. B.C. D.8、在二元一次方程12x+y=8中,当y<0时,x的取值范围是( ).A. B. C. D.9、下列不等式中,是一元一次不等式的是( )A. B. C. D.10、若,则下列式子一定成立的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式的非负整数解有______.2、不等式组 的解集是________.3、用不等式表示:的不大于的3倍_____.4、 “的4倍减去的差是正数”,用不等式表示为_________.5、若不等式的最小整数解是,不等式的最大负整数解是,则_____.三、解答题(5小题,每小题10分,共计50分)1、解不等式组,并把它的解集在数轴上表示出来.2、指出他们的错误在哪里:(1)甲在不等式-10<0的两边都乘-1,得到10<0;(2)乙在不等式2x>5x两边同除以x,得到2>5.3、解不等式组:,并求出它的所有整数解的和.4、已知某校六年级学生超过130人,而不足150人,将他们按每组12人分组,多3人,将他们按每组8人分组,也多3人,该校六年级学生有多少人?5、解下列不等式组,并在数轴上表示它们的解集(1)(2) -参考答案-一、单选题1、A【解析】【分析】先求出方程的解与不等式组的解集,再根据题意相确定的取值范围即可.【详解】解:解方程3﹣2x=3(k﹣2),得:,由题意得,解得:,解不等式,得:, 解不等式,得:,不等式组有解,,则,符合条件的整数的值的和为,故选A.【点睛】本题主要考查了一元一次方程的解、一元一次不等式组的整数解等知识点,明确题意、正确求解不等式成为解答本题的关键.2、B【解析】略3、C【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于的不等式组,求出即可.【详解】解:,解不等式①得:,解不等式②得:,不等式组的解集为,不等式组有两个整数解,,故选:C.【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出关于的不等式组,难度适中.4、A【解析】略5、C【解析】【分析】根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值.【详解】解:条线段的长分别是4,4,m,若它们能构成三角形,则,即又为整数,则整数m的最大值是7故选C【点睛】本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键.6、C【解析】【分析】利用不等式的基本性质可判断A,B,C,再利用特值法令可判断D,从而可得答案.【详解】解: a<b, 故A不符合题意,C符合题意; 故B不符合题意;当时,满足 而 故D不符合题意;故选C【点睛】本题考查的是利用不等式的基本性质判断变形是否正确,掌握“不等式的基本性质与特值法的运用”是解本题的关键.7、B【解析】【分析】由题意根据解一元一次不等式基本步骤:移项、合并同类项,系数化为1求得不等式的解集,进而在数轴上表示即可得出答案.【详解】解:,移项得:,合并得:,解得:,在数轴上表示为:故选:B.【点睛】本题考查解一元一次不等式,熟练掌握一元一次不等式解题步骤,移项、合并同类项、把x系数化为1是解题的关键.8、C【解析】略9、B【解析】【分析】根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可以.【详解】A、不等式中含有两个未知数,不符合题意;B、符合一元一次不等式的定义,故符合题意;C、没有未知数,不符合题意;D、未知数的最高次数是2,不是1,故不符合题意.故选:B【点睛】本题考查一元一次不等式的定义,掌握其定义是解决此题关键.10、B【解析】【分析】根据不等式的性质依次分析判断.【详解】解:∵,∴a+1>b+1,故选项A不符合题意;∵,∴,故选项B符合题意;∵,∴-2a<-2b,故选项C不符合题意;∵,∴,故选项D不符合题意;故选:B.【点睛】此题考查了不等式的性质:不等式两边同时加上或减去同一个整式,不等号方向不变;不等式两边同时乘或除以同一个不为0的整正数,不等号方向不变;不等式两边同时乘或除以同一个不为0的负数,不等号方向改变.二、填空题1、0,1,2,3【解析】【分析】先求出不等式的解集,再根据非负整数的定义得到答案.【详解】解:,2x<8,x<4,∴不等式的非负整数解有0,1,2,3,故答案为:0,1,2,3.【点睛】此题考查了解不等式,求不等式的非负整数解,正确解不等式是解题的关键.2、-1<x≤2【解析】【分析】先求出每个一元一次不等式的解集,再求出它们公共部分的解集即可.【详解】解:,解①得:x≤2,解②得:x>-1,∴该不等式组的解集为-1<x≤2,故答案为:-1<x≤2.【点睛】本题考查解一元一次不等式组,熟练掌握一元一次不等式组的解法,正确得出公共部分的解集是解答的关键.3、【解析】【分析】“的”表示为,“的3倍” 表示为,“不大于” 即小于等于,进而得出不等式.【详解】解:的不大于的3倍,,故答案为:.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确理解题意是解题关键.4、【解析】【详解】解:“的4倍减去的差是正数”,用不等式表示为: 故答案为:【点睛】本题考查的是列不等式,理解题意,体现准确的运算关系与运算顺序是列式的关键,注意正数即是大于0的数.5、3【解析】【分析】根据不等求得的取值范围,从而可以得到、的值,进而求得的值.【详解】解:,移项,得,合并同类项,得,,不等式的最小整数解是,,,移项,得,合并同类项,得,系数化为1,得,,不等式的最大负整数解是,,,故答案为:3.【点睛】本题考查一元一次不等式的整数解,解题的关键是明确解一元一次不等式的方法.三、解答题1、不等式组的解集为:,数轴表示见解析【解析】【分析】首先分别求解不等式,再根据不等式组的性质得到解集,结合数轴的性质作图,即可得到答案.【详解】∵,移项并合并同类项,得:,∵ 去分母,得:移项并合并同类项,得:,∴不等式组的解集为:,将不等式组的解集表示在数轴上如下:.【点睛】本题考查了一元一次不等式组、数轴的知识;解题的关键是熟练掌握一元一次不等式组的性质,从而完成求解.2、 (1)见解析(2)见解析【解析】【分析】(1)根据不等式的性质解答即可;(2)根据不等式的性质解答即可,注意x的正负.(1)解:甲在不等式-10<0的两边都乘-1,应得到10>0;(2)解:乙在不等式2x>5x两边同除以x,若x>0,则2>5(即原不等式不成立),若x<0,则5>2.【点睛】本题考查不等式的性质,熟知不等式的两边都乘以(或除以)同一个负数,不等号的方向要改变是解答的关键.3、不等式组的解集是-2≤x<4,和为3【解析】【分析】先求出两个不等式的解集,再求其公共解,然后写出范围内的整数.【详解】解:,解不等式①得,x≥-2,解不等式②得,x<4,所以,不等式组的解集是-2≤x<4,所以,它的所有整数解的和是-2-1+0+1+2+3=3.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).4、147【解析】【分析】由12和8的最小公倍数为24,可设该校六年级学生有(24x+3)人,根据“该校六年级学生超过130人,而不足150人”,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,结合x为正整数即可确定x的值,再将其代入(24x+3)中即可得出结论.【详解】解:∵12和8的最小公倍数为24,∴设该校六年级学生有(24x+3)人.依题意,得:,解得:5<x<6.又∵x为正整数,∴x=6,∴24x+3=147(人).答:该校六年级学生有147人.【点睛】本题考查了一元一次不等式组.解题的关键在于通过确定两数的最小公倍数得到数量关系,正确的列不等式组.5、 (1);(2)无解.【解析】【分析】(1)求出每个不等式的解集,再求两个不等式解集的公共部分即可;(2)求出每个不等式的解集,再求两个不等式解集的公共部分即可.(1)解不等式①,得:解不等式②,得:所以不等式组的解集为:解集在数轴上表示如下:(2)解不等式①,得:解不等式②,得:所以不等式组的解集无解解集在数轴上表示如下:【点睛】本题考查了解一元一次不等式组,熟练掌握一元一次不等式的解法是解题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试测试题,共17页。试卷主要包含了如图,数轴上表示的解集是,对有理数a,b定义运算等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十章 函数综合与测试课堂检测,共23页。试卷主要包含了函数的自变量x的取值范围是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试课后作业题,共24页。试卷主要包含了下列调查方式中,合适的是,下列调查中,最适合采用全面调查等内容,欢迎下载使用。