冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试复习练习题
展开第十章一元一次不等式和一元一次不等式组专题测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知x=1是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=4不是这个不等式的解,则a的取值范围是( )
A.a<﹣2 B.a≤1 C.﹣2<a≤1 D.﹣2≤a≤1
2、不等式的解集在数轴上表示正确的是 ( )
A. B.
C. D.
3、若不等式-1≤2-x的解集中x的每一个值,都能使关于x的不等式3(x-1)+5>5x+2(m+x)成立,则m的取值范围是( )
A.m>- B.m<- C.m<- D.m>-
4、如果a<b,那么下列不等式中不成立的是( )
A.3a<3b B.-3a<-3b C.-a>-b D.3+a<3+b
5、若成立,则下列不等式成立的是( )
A. B.
C. D.
6、若,则不等式组的解集是( )
A. B. C. D.无解
7、若整数m使得关于x的不等式组 有且只有三个整数解,且关于x,y的二元一次方程组 的解为整数(x,y均为整数),则符合条件的所有m的和为( )
A.27 B.22 C.13 D.9
8、已知关于x、y的二元一次方程组的解满足,且关于s的不等式组恰好有4个整数解,那么所有符合条件的整数a的个数为( )
A.4个 B.3个 C.2个 D.1个
9、已知m<n,那么下列各式中,不一定成立的是( )
A.2m<2n B.3﹣m>3﹣n C.mc2<nc2 D.m﹣3<n﹣1
10、下列说法中错误的是( )
A.若,则 B.若,则
C.若,则 D.若,则
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、不等式的解集是_______.
2、 “a与b的2倍的和大于1”用不等式可表示为________.
3、下列数值-2,-1.5,-1,0,1,1.5,2中能使1-2x>0成立的个数有____个.
4、不等式4x﹣3≤2x+1的非负整数解的和是 _____.
5、不等式组 的解集是________.
三、解答题(5小题,每小题10分,共计50分)
1、小聪去购买笔记本和钢笔共30件,每本笔记本2元,每支钢笔5元,若购买的钢笔数量不少于笔记本的数量.
(1)小聪至多能买几本笔记本?
(2)若小聪只带了130元钱,此时他至少要买几本笔记本?
2、解不等式:,并把它的解集在数轴上表示出来,再写出最大负整数解.
3、根据不等式的性质,将下列不等式化成“x>a”或“x<a”的形式.
10x-1>7x
4、求不等式组:的最大整数解.
5、一个自然数能分解成,其中A,B均为两位数,A的十位数字比B的十位数字少1,且A,B的个位数字之和为10,则称这个自然数为“双十数”.
例如:∵,6比7小1,,∴4819是“双十数”;
又如:∵,3比4小1,,∴1496不是“双十数”.
(1)判断297,875是否是“双十数”,并说明理由;
(2)自然数为“双十数”,N的百位及其以上的数位组成一个数记为p,N的十位数字和个位数字组成的两位数记为q,例如:∵,∴,;又如:∵,∴,.若A与B的十位数字之和能被5整除,且能被比B的个位数字大10的数整除,求所有满足条件的自然数N.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据不等式解的定义列出不等式,求出解集即可确定出a的范围.
【详解】
解:∵x=1是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=4不是这个不等式的解,
∴ 且 ,
即﹣4(﹣2a+2)≤0且﹣(a+2)>0,
解得:a<﹣2.
故选:A.
【点睛】
此题考查了不等式的解集,熟练掌握一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集是解题的关键.
2、B
【解析】
【分析】
先解不等式,得到不等式的解集,再在数轴上表示不等式的解集即可.
【详解】
解:,
移项得:
解得:
所以原不等式得解集:.
把解集在数轴上表示如下:
故选B
【点睛】
本题考查的是一元一次不等式的解法,在数轴上表示不等式的解集,掌握“画图时,小于向左拐,大于向右拐”是解本题的关键,注意实心点与空心圈的使用.
3、C
【解析】
【分析】
求出不等式-1≤2-x的解,求出不等式3(x−1)+5>5x+2(m+x)的解集,得出关于m的不等式,求出m即可.
【详解】
解不等式-1≤2-x,得:x≤,
解不等式3(x-1)+5>5x+2(m+x),得:x<,
∵不等式-1≤2-x的解集中x的每一个值,都能使关于x的不等式3(x-1)+5>5x+2(m+x)成立,
∴>,
解得:m<-.
故选:C
【点睛】
本题主要对解一元一次不等式组,不等式的性质等知识点的理解和掌握,能根据已知得到关于m的不等式是解此题的关键.
4、B
【解析】
【分析】
根据不等式的性质,加减运算不等号不变,乘除运算,正数不等号不变,负号,不等号一定改变,判断B不成立.
【详解】
∵a<b,3是正数,
∴3a<3b,
故A不符合题意;
∵a<b,-3是负数,
∴-3a>-3b,
故B不成立,符合题意;
∵a<b,-1是负数,
∴-a>-b,
故C成立,不符合题意;
∵a<b,3是正数,
∴3+a<3+b,
故D成立,不符合题意;
故选B.
【点睛】
本题考查了不等式的基本性质,熟练掌握性质,特别是负数参与计算的不等式问题,注意改变不等号的方向是解题的关键.
5、C
【解析】
【分析】
根据不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变解答.
【详解】
解:A、不等式a>b两边都乘-1,不等号的方向没有改变,不符合题意;
B、不等式a>b两边都乘-1,不等号的方向没有改变,不符合题意;
C、不等式a>b两边都乘2,不等号的方向不变,都减1,不等号的方向不变,符合题意;
D、因为≥0,当=0时,不等式a>b两边都乘,不等式不成立,不符合题意;
故选:C.
【点睛】
本题考查了不等式的基本性质.不等式两边同时乘以或除以同一个数或式子时,一定要注意不等号的方向是否改变.
6、D
【解析】
【分析】
根据求不等式组的解集方法:“大大小小找不到”判断即可”
【详解】
若,则不等式组的解集是无解.
故选:D.
【点睛】
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
7、A
【解析】
【分析】
先求出不等式组的解集为,根据不等式组有且只有三个整数解,可得 ,再解出方程组,可得,再根据x,y均为整数,可得取,即可求解.
【详解】
解:
解不等式①,得: ,
解不等式②,得: ,
∴不等式的解集为,
∵不等式组有且只有三个整数解,
∴ ,
解得: ,
∵m为整数,
∴ 取5,6,7,8,9,10,11,12,13,14,15,
,解得: ,
∴当取 时,x,y均为整数,
∴符合条件的所有m的和为 .
故选:A
【点睛】
本题主要考查了解一元一次不等组和二元一次方程组,及其整数解,熟练掌握解一元一次不等组和二元一次方程组的方法是解题的关键.
8、C
【解析】
【分析】
先求出方程组和不等式的解集,再求出a的范围,最后得出答案即可.
【详解】
解:解方程组得:,
∵关于x、y的二元一次方程组的解满足,
∴≥,
解得:a≥-,
∵关于s的不等式组恰好有4个整数解,即4个整数解为1,0,-1,-2,
∴,
解得-2≤a<1,
∴≤a<1,
∴符合条件的整数a的值有:-1,0,共2个,
故选:C.
【点睛】
本题主要考查了解二元一次方程和一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
9、C
【解析】
【分析】
不等式性质1:在不等式的两边都加上或减去同一个数,不等号的方向不变,性质2:在不等式的两边都乘以或除以同一个正数,不等号的方向不变,性质3:在不等式的两边都乘以或除以同一个负数,不等号的方向改变,根据不等式的性质逐一判断即可.
【详解】
解:A、由m<n,根据不等式性质2,得2m<2n,本选项成立;
B、由m<n,根据不等式性质3,得﹣m>﹣n,再根据不等式性质1,得3﹣m>3﹣n,本选项成立;
C、因为c2≥0,当c2>0时,根据不等式性质2,得mc2<nc2,当c2=0时,mc2=nc2,本选项不一定成立;
D、由m<n,根据不等式性质1,得m﹣3<n﹣2<n﹣1,本选项成立;
故选:C.
【点睛】
本题考查的是不等式的基本性质,掌握“利用不等式的基本性质判断不等式的变形是否正确”是解本题的关键.
10、C
【解析】
【分析】
根据不等式的性质进行分析判断.
【详解】
解:A、若,则,故选项正确,不合题意;
B、若,则,故选项正确,不合题意;
C、若,若c=0,则,故选项错误,符合题意;
D、若,则,故选项正确,不合题意;
故选C.
【点睛】
本题考查了不等式的性质.解题的关键是掌握不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.
二、填空题
1、
【解析】
【分析】
根据去括号、移项、合并同类项、系数化为1即可求出不等式的解集.
【详解】
解:
去括号得,
移项得,
合并得,
系数化为1,得:
故答案为:
【点睛】
此题考查了解一元一次不等式,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解集.
2、a+2b>1
【解析】
【分析】
与的2倍即为,再用不等号连接即得答案.
【详解】
解:由题意得:“与的2倍的和大于1”用不等式表示为.
故答案为:.
【点睛】
本题考查了根据不等关系列出不等式,属于应知应会题型,正确理解题意是关键.
3、4
【解析】
【分析】
解不等式,再根据不等式的解集确定使不等式成立的数有几个即可.
【详解】
解:1-2x>0,
解得:x<.
满足x<的有-2,-1.5,-1,0共4个,
故答案为:4.
【点睛】
本题考查了解一元一次不等式,解题关键是熟练掌握解不等式的方法.
4、3
【解析】
【分析】
根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1得出不等式的解集,从而得出答案.
【详解】
解:4x﹣3≤2x+1
移项,得:4x﹣2x≤1+3,
合并同类项,得:2x≤4,
系数化为1,得:x≤2,
∴不等式的非负整数解为0、1、2,
∴不等式的非负整数解的和为0+1+2=3,
故答案为:3.
【点睛】
本题主要考查了一元一次不等式的整数解,解题的关键在于能够熟练掌握解一元一次不等式的方法.
5、-1<x≤2
【解析】
【分析】
先求出每个一元一次不等式的解集,再求出它们公共部分的解集即可.
【详解】
解:,
解①得:x≤2,
解②得:x>-1,
∴该不等式组的解集为-1<x≤2,
故答案为:-1<x≤2.
【点睛】
本题考查解一元一次不等式组,熟练掌握一元一次不等式组的解法,正确得出公共部分的解集是解答的关键.
三、解答题
1、 (1)小聪最多能购买15本笔记本
(2)他至少要买7本笔记本
【解析】
【分析】
(1)设小聪购买的笔记本数量为x本,则购买支钢笔,然后根据购买的钢笔数量不少于笔记本的数量列出不等式求解即可;
(2)设小聪购买的笔记本数量为y本,则购买支钢笔,然后根据购买的钢笔数量不少于笔记本的数量以及钢笔和笔记本的花费不能超过130元列出不等式求解即可.
(1)
解:设小聪购买的笔记本数量为x本,则购买支钢笔,
由题意得:,
解得,
∴小聪最多能购买15本笔记本;
(2)
解:设小聪购买的笔记本数量为y本,则购买支钢笔,
由题意得:,
解得,
∴他至少要买7本笔记本.
【点睛】
本题主要考查了不等式组的应用,解题的关键在于能够根据题意正确列出不等式求解.
2、,见解析,不等式的最大负整数解为
【解析】
【分析】
先去分母,移项合并同类项求出不等式的解集,再根据数轴上数的特点表示不等式的解集及确定整数解.
【详解】
解:,
去分母得:,
移项合并得:,
则不等式的最大负整数解为.
【点睛】
此题考查了解一元一次不等式,利用数轴表示不等式的解集,以及确定不等式的整数解,正确掌握解一元一次不等式的解法是解题的关键.
3、x>
【解析】
【分析】
根据不等式的性质,可得答案.
【详解】
解:10x-1>7x,
两边都减7x、加1,得
10x-7x-1+1>7x-7x+1,
3x>1,
两边都除以3,得x>;
【点睛】
本题考查了不等式的性质,熟记不等式的性质是解题关键.
4、0
【解析】
【分析】
分别求出每一个不等式的解集,再根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到,确定不等式组的解集即可找出最大整数解.
【详解】
,
解不等式①,得,
解不等式②,得,
原不等式组的解集为.
则其最大整数解为0.
【点睛】
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
5、 (1)不是“双十数”, 是“双十数”
(2)
【解析】
【分析】
(1)根据定义分解297,875进而判断即可;
(2)根据定义设,则,进而根据A与B的十位数字之和能被5整除,且能被比B的个位数字大10的数整除,分类讨论求得即可求得
(1)
,比小1,,
不是“双十数”
,比小1,,
是“双十数”
(2)
自然数为“双十数”,
设
则
又A与B的十位数字之和能被5整除,
则是整数,
或
或
或,
能被比B的个位数字大10的数整除,
,为正整数;
即,又
又
或,为正整数;
即
或
解得或
或
综上所述
【点睛】
本题考查了一元一次不等式组,二元一次方程组,整除,理解题意是解题的关键.
冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课后测评: 这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课后测评,共17页。
初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试达标测试: 这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试达标测试,共18页。试卷主要包含了如图,数轴上表示的解集是,若,则下列各式中正确的是等内容,欢迎下载使用。
初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试同步测试题: 这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试同步测试题,共19页。试卷主要包含了若,则不等式组的解集是,已知关于x等内容,欢迎下载使用。