数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课后复习题
展开
这是一份数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课后复习题,共20页。试卷主要包含了对有理数a,b定义运算,不等式﹣2x+4<0的解集是,下列四个说法,设m为整数,若方程组的解x,下列不等式不能化成x>-2的是等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、不等式3+2x≥1的解在数轴上表示正确的是( )A. B.C. D.2、若x<y成立,则下列不等式成立的是( )A.﹣x+2<﹣y+2 B.4x>4y C.﹣3x<﹣3y D.x﹣2<y﹣23、若,那么下列各式中正确的是( )A. B.C. D.4、对有理数a,b定义运算:a✬b=ma +nb,其中m,n是常数,如果3✬4=2,5✬8>2,那么n的取值范围是( )A.n> B.n< C.n>2 D.n<25、不等式﹣2x+4<0的解集是( )A.x> B.x>﹣2 C.x<2 D.x>26、下列四个说法:①若a=﹣b,则a2=b2;②若|m|+m=0,则m<0;③若﹣1<m<0,则m2<﹣m;④两个四次多项式的和一定是四次多项式.其中正确说法的个数是( )A.4 B.3 C.2 D.17、设m为整数,若方程组的解x、y满足,则m的最大值是( )A.4 B.5 C.6 D.78、已知关于x的不等式组无解,则a的取值范围是( )A.a≤﹣2 B.a>3 C.﹣2<a<3 D.a<﹣2或a>39、下列不等式不能化成x>-2的是( )A.x+4>2 B.x-1>-3 C.-2x>-4 D.2x>-410、不等式4x-8≤0的解集是( )A.x≥-2 B.x≤-2C.x≥2 D.x≤2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知关于,的方程组,其中,给出下列命题:①当时,,的值互为相反数;②是方程组的解;③当时,方程组的解也是方程的解;④若,则.其中正确命题的序号是 __.(把所有正确命题的序号都填上)2、给出下列不等式:①x+1>x-x2;②y-1>3;③x+≥2;④x≤0;⑤3x-y<5,其中属于一元一次不等式的是:___.(只填序号)3、长方形的一边长是4,另一边长是x+3,它的面积不大于32,则x的取值范围是_______.4、不等式2x﹣3<4x的最小整数解是____.5、若不等式组无解,则的取值范围为__.三、解答题(5小题,每小题10分,共计50分)1、如果一个不等式中含有绝对值,并且绝对值符号中含有未知数,我们定义这个不等式为绝对值不等式,小明在课外小组活动时探究发现:①|x|>a(a>0)的解集是x>a或x<﹣a;②|x|<a(a>0)的解集是﹣a<x<a.根据小明的发现,解决下列问题:(1)请直接写出下列绝对值不等式的解集;①|x|>3的解集是 ②|x|<的解集是 .(2)求绝对值不等式2|x﹣1|+1>9的解集.2、西大附中为打造“书香校园”,计划在校内组建中、小型两类图书角共30个,已知组建一个中型图书角需科技类书籍80本,人文类书籍50本,组建一个小型图书角需科技类书籍30本,人文类书籍60本.目前学校用于组建图书角的科技类书籍不超过1900本,人文类书籍不超过1620本.(1)符合题意的组建方案有几种?请你帮学校设计出来.(2)若组建一个中型图书角的费用是860元,小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?3、 “民族要复兴,乡村必振兴”,巴南区积极践行国家乡村振兴战略,大力发展乡村特色产业,丰盛镇脆桃种植基地连续几年产量获得大丰收,该基地采用现场采摘销售和线上销售两种模式.(1)今年该基地脆桃产量为51000千克,全部售出,其中线上销量不超过现场采摘销量的2倍.求现场采摘销量至少多少千克?(2)该基地6月份现场采摘销售均价为15元千克,销售量为1200千克.线上销售均价为10元千克,销售量为1800千克.7月份现场采摘销售均价上涨了,销售量下降了,线上销售均价上涨了,销量与6月份一样,7月份销售总金额比6月份销售总金额减少了,求的值.4、解不等式组:.5、对于一个三位正整数n,如果n满足:它的百位数字、十位数字之和与个位数字的差等于6,那么称这个数n为“开心数”,例如:n1=936,∵9+3﹣6=6,∴936是“开心数”:n2=602,∵6+0﹣2=4≠6,∴602不是“开心数”.(1)判断666、785是否为“开心数”?请说明理由;(2)若将一个“开心数”m的个位数的两倍放到百位,原来的百位数变成十位数,原来的十位数变成个位数,得到一个新的三位数s(例如;若m=543,则s=654),若s也是一个“开心数”,求满足条件的所有m的值 -参考答案-一、单选题1、B【解析】【分析】不等式移项,合并同类项,把x系数化为1求出解集,表示在数轴上即可.【详解】解:不等式3+2x≥1,移项得:2x≥1﹣3,合并同类项得:2x≥﹣2,解得:x≥﹣1,数轴表示如下:.故选:B.【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.不等式的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.2、D【解析】【分析】不等式的性质1:在不等式的两边都加上或减去同一个数,不等号的方向不变,性质2:在不等式的两边都乘以或除以同一个正数,不等号的方向不变,性质3:在不等式的两边都乘以或除以同一个负数,不等号的方向改变;根据不等式的基本性质逐一判断即可.【详解】解:A、不等式x<y的两边都乘﹣1,不等号的方向改变,即﹣x>﹣y,不等式﹣x>﹣y的两边都加上2,不等号的方向不变,即﹣x+2>﹣y+2,原变形错误,故此选项不符合题意;B、不等式x<y的两边都乘4,不等号的方向不变,即4x<4y,原变形错误,故此选项不符合题意;C、不等式x<y的两边都乘﹣3,不等号的方向改变,即﹣3x>﹣3y,原变形错误,故此选项不符合题意;D、不等式x<y的两边都减去2,不等号的方向不变,即x﹣2<y﹣2,原变形正确,故此选项符合题意;故选:D.【点睛】本题考查的是不等式的基本性质,掌握“不等式的基本性质”是解本题的关键.3、C【解析】【分析】根据不等式的性质判断.【详解】解:∵,∴a+1>b+1,故选项A错误;∵,∴-a<-b,故选项B错误;∵,∴,故选项C正确;∵,∴,故选项D错误;故选:C.【点睛】此题考查了不等式的性质,熟记不等式的性质是解题的关键.4、A【解析】【分析】先根据新运算的定义和3✬4=2将用表示出来,再代入5✬8>2可得一个关于的一元一次不等式,解不等式即可得.【详解】解:由题意得:,解得,由5✬8>2得:,将代入得:,解得,故选:A.【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键.5、D【解析】【分析】首先通过移项得到,然后利用不等式性质进一步化简即可得出答案.【详解】解:移项可得:,两边同时除以-2可得:,∴原不等式的解集为:,故选:D.【点睛】本题主要考查了解一元一次不等式,熟练掌握相关方法是解题关键.6、C【解析】【分析】根据题意分别利用相反数的性质以及绝对值的代数意义和多项式的加法进行判断即可.【详解】解:①若a=﹣b,则a2=b2,说法正确;②若|m|+m=0,则m 0,说法错误;③若﹣1<m<0,则m2<﹣m,说法正确;④两个四次多项式的和不一定是四次多项式,说法错误;①③正确,共有2个.故选:C.【点睛】本题考查相反数的性质和不等式性质以及绝对值的代数意义和多项式的加法,熟练掌握相关的概念是解题的关键.7、B【解析】【分析】先把m当做常数,解一元二次方程,然后根据得到关于m的不等式,由此求解即可【详解】解:把①×3得:③,用③+①得:,解得,把代入①得,解得,∵,∴,即,解得,∵m为整数,∴m的最大值为5,故选B.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.8、B【解析】【分析】根据大大小小无解找,确定a的值即可.【详解】∵关于x的不等式组无解,∴a>3,故选:B.【点睛】本题考查了不等式组的解集,熟练掌握一元一次不等式组的解集确定方法是解题的关键.9、C【解析】【分析】分别解不等式进行判断即可.【详解】解:A.x+4>2,两边同减4得x>-2,不符合题意;B.x-1>-3,两边同加1得x>-2,不符合题意;C.-2x>-4,两边同除以-2得x<2,符合题意;D.2x>-4,两边同除以2得x>-2,不符合题意.故选:C.【点睛】此题考查了解一元一次不等式,解题的关键是正确掌握不等式的性质计算.10、D【解析】【分析】根据题意先移项,再把x的系数化为1即可得出答案.【详解】解:不等式4x-8≤0,移项得,4x≤8,把x的系数化为1得,x≤2.故选:D.【点睛】本题考查的是解一元一次不等式,熟练掌握解一元一次不等式的基本步骤是解答此题的关键.二、填空题1、①③④【解析】【分析】①先求出方程组的解,把代入求出、即可;②把代入,求出的值,再根据判断即可;③求出方程组的解,再代入方程,看看方程左右两边是否相等即可;④根据和求出,求出,再求出的范围即可.【详解】解方程组得:,①当时,,,所以、互为相反数,故①正确;②把代入得:,解得:,,此时不符合,故②错误;③当时,,,方程组的解是,把,代入方程得:左边右边,即当时,方程组的解也是方程的解,故③正确;④,,即,,,,,,故④正确;故答案为:①③④.【点睛】本题考查了解二元一次方程组,二元一次方程组的解,一元一次方程的解,解不等式组等知识点,能求出方程组的解是解此题的关键.2、②④【解析】【分析】根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就是一元一次不等式.【详解】①x+1>x-x2是一元二次不等式,故选项不符合题意;②y-1>3是一元一次不等式,故此选项符合题意;③x+≥2中不是整式,故选项不符合题意;④x≤0是一元一次不等式,故此选项符合题意;⑤3x-y<5;含两个未知数,故选项不符合题意.故答案为:②④【点睛】本题考查一元一次不等式的定义中的未知数的最高次数为1次,本题还要注意未知数的系数不能是0.3、-3<x≤5【解析】【分析】根据长方形面积=长×宽,列出不等式组,解一元一次不等式组即可得出结论.【详解】解:由已知可得:,解得:-3<x≤5.故答案为:-3<x≤5.【点睛】本题考查了一元一次不等式组的应用以及长方形的面积公式,解题的关键是能熟练的解一元一次不等式组.本题属于基础题,难度不大,解决该类题型需根据题意列出正确的一元一次不等式组.4、【解析】【详解】解:,,,最小整数解是,故答案为.【点睛】本题考查了一元一次不等式的整数解,解题的关键是求出不等式的解集.5、【解析】【分析】先求出不等式的解集为,再由不等式组无解,得到,由此即可得到答案.【详解】解:解不等式,得:,∵不等式组无解,∴,解得,故答案为:.【点睛】本题主要考查了根据不等式组的解集情况求参数,解题的关键在于能够熟练掌握不等式组的解集的情况:大小小大中间找,大大小小找不到.三、解答题1、 (1)①x>3或x<−3;②−<x<(2)x>5或x<−3.【解析】【分析】(1)根据题意即可得;(2)将2|x−1|的数字因数2化为1后,根据以上结论即可得.(1)解:①由探究发现,|x|>3的解集是x>3或x<−3;故答案为:x>3或x<−3;②由探究发现,|x|<的解集是−<x<.故答案为:−<x<.(2)解:2|x−1|+1>9,2|x−1|>9−1,2|x−1|>8,|x−1|>4,∴|x−1>4的解集可表示为x−1>4或x−1<−4,∴2|x−1|+1>9的解集为:x>5或x<−3.【点睛】本题主要考查解一元一次不等式,解题的关键是熟练掌握一元一次不等式的基本步骤和绝对值的性质.2、 (1)共有3种组建方案,方案1:组建中型图书角18个,小型图书角12个;方案2:组建中型图书角19个,小型图书角11个;方案3:组建中型图书角20个,小型图书角10个.(2)方案1费用最低,最低费用是22320元【解析】【分析】(1)设组建中型图书角x个,则组建小型图书角个,根据题意列出不等式组求解,然后根据题意x为整数,可以取18,19,20,代入即可得出各个方案;(2)根据题意,计算各个方案的费用,然后比较即可得.(1)解:设组建中型图书角x个,则组建小型图书角个,依题意得:,解得:,又∵x为整数,∴x可以取18,19,20,共有3种组建方案,方案1:组建中型图书角18个,小型图书角12个;方案2:组建中型图书角19个,小型图书角11个;方案3:组建中型图书角20个,小型图书角10个;(2)选择方案1的费用为:(元;选择方案2的费用为:(元;选择方案3的费用为:(元.,方案1费用最低,最低费用是22320元.【点睛】题目主要考查不等式组的应用及方案选择问题,理解题意,列出不等式组是解题关键.3、 (1)现场采摘销量至少为17000千克(2)25【解析】【分析】(1)设现场采摘销量为千克,则线上销量为千克,根据线上销量不超过线下销量的3倍,即可得出关于的一元一次不等式,解之取其中的最小值即可;(2)利用销售总金额销售单价销售数量,结合今年的销售总金额比去年销售总金额减少了,即可得出关于的一元二次方程,解方程求解即可.(1)设现场采摘销售了千克,则线上销售了千克,依题意得:,解得:,答:现场采摘销量至少为17000千克;(2)依题意得:解得,答:的值为25.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元一次方程.4、【解析】【分析】,移项合并同类项,系数化为1;,先通分、去括号,然后移项合并同类项,最后系数化为1;求出两个不等式的公共解即可.【详解】解:①;②;∴不等式组的解为:.【点睛】本题考查了解一元一次不等式组.解题的关键在于正确的求每一个不等式的解.易错点在于消去负号时不等号方向改变.5、 (1)666是“开心数”,785不是“开心数”,理由见解析(2)464和532【解析】【分析】(1)根据“开心数”的定义即可得;(2)设的百位数字为,十位数字为,个位数字为,从而可得的百位数字为,十位数字为,个位数字为,再根据“开心数”的定义列出等式,将都用表示出来,然后根据求出的取值范围,最后根据为正整数进行分析即可得.(1)解:666是“开心数”,785不是“开心数”,理由如下:,是“开心数”,,不是“开心数”.(2)解:设的百位数字为,十位数字为,个位数字为,则的百位数字为,十位数字为,个位数字为,和都是“开心数”,,解得,,,,解得,又为正整数,所有符合条件的取值为,当时,,则,当时,,则,综上,满足条件的所有的值为464和532.【点睛】本题考查了一元一次不等式组的应用、三元一次方程组的应用等知识点,掌握理解“开心数”的定义是解题关键.
相关试卷
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试同步测试题,共18页。试卷主要包含了下列说法中错误的是,如果,已知三角形两边长分别为7等内容,欢迎下载使用。
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试当堂检测题,共17页。试卷主要包含了已知三角形两边长分别为7,不等式的最大整数解是等内容,欢迎下载使用。
这是一份2020-2021学年第十章 一元一次不等式和一元一次不等式组综合与测试课时作业,共17页。试卷主要包含了下列变形中不正确的是等内容,欢迎下载使用。