初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试测试题
展开
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试测试题,共17页。试卷主要包含了下列各式,关于x的方程3﹣2x=3,如果,若,则下列式子中,错误的是等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果a>b,那么下列结论中,正确的是( )A.a﹣1>b﹣1 B.1﹣a>1﹣b C. D.﹣2a>﹣2b2、已知a,b都是实数,且a<b,则下列不等式的变形正确的是( )A.a﹣1>b﹣1 B.﹣a+2<﹣b+2 C.3a<3b D.3、下列不等式中,属于一元一次不等式的是( )A.4>1 B.3x-24<4C. <2 D.4x-3<2y-74、已知a>b,下列变形一定正确的是( )A.3a<3b B.4+a>4﹣b C.ac2>bc2 D.3+2a>3+2b5、下列各式:①1﹣x:②4x+5>0;③x<3;④x2+x﹣1=0,不等式有( )个.A.1 B.2 C.3 D.46、关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为( )A.5 B.2 C.4 D.67、如果、都是实数,且,那么下列结论中,正确的是( )A. B. C. D.8、某市最高气温是33℃,最低气温是24℃,则该市气温t(℃)的变化范围是( )A.t>33 B.t≤24 C.24<t<33 D.24≤t≤339、若,则下列式子中,错误的是( )A. B. C. D.10、若成立,则下列不等式成立的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式组的解集是 _____.2、 “a的2倍减去3的差是一个非负数”用不等式表示为_________.3、不等式2x﹣3<4x的最小整数解是____.4、3x与2y的差是非正数,用不等式表示为_________.5、在不等式组的解集中,最大的整数解是______.三、解答题(5小题,每小题10分,共计50分)1、将二元一次方程组的解中的所有数的全体记为,将不等式(组的解集记为,给出定义:若中的数都在内,则称被包含;若中至少有一个数不在内,则称不能被包含.如,方程组的解为,记,,方程组的解为,记,,不等式的解集为,记.因为0,2都在内,所以被包含;因为4不在内,所以不能被包含.(1)将方程组的解中的所有数的全体记为,将不等式的解集记为,请问能否被包含?说明理由;(2)将关于,的方程组的解中的所有数的全体记为,将不等式组的解集记为,若不能被包含,求实数的取值范围.2、临近春节,将进入年货物流高峰期,某物流公司计划购买A、B两种型号的智能快递车搬运年货,已知A型快递车比B型快递车每小时多搬运20kg年货,且4台A型快递车每小时搬运的年货与5台B型快递车每小时搬运的年货数量相同.(1)求A、B两种型号的快递车每小时分别搬运多少年货?(2)该物流公司计划采购A、B两种型号的快递车共10台,其中A型快递车a台,要求每小时搬运的年货不少于920kg,则至少购进A型快递车多少台?3、在“爱心传递”活动中,某校学生积极捐款. 其中六年级的两个班级的捐款情况如下表:班 级人数捐款总额(元)人均捐款额(元)(1)班 (2)班 合计8090011.25小杰在统计时不小心污损了其中的部分数据,但他还记得以下信息:信息一:六(2)班的捐款额比六(1)班多60元;信息二:六(1)班学生平均每人捐款的金额不小于10元;请根据表格中留下的数据和以上信息,帮助小杰同学解决下列问题:(1)六(1)班和六(2)班的捐款总额各是多少元?(2)六(2)班的学生数至少是多少人?4、解不等式组:,并把其解集在数轴上表示出来.5、解不等式组:,并求出它的所有整数解的和. -参考答案-一、单选题1、A【解析】【分析】直接利用不等式的基本性质判断即可得出答案.【详解】解:A、a>b两边都减去1得a﹣1>b﹣1,故本选项正确;B、a>b两边都乘以﹣1再加1得1﹣a<1﹣b,故本选项错误;C、a>b两边都乘以得,,故本选项错误;D、a>b两边都乘以﹣2得,﹣2a<﹣2b,故本选项错误.故选:A.【点睛】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.2、C【解析】【分析】利用不等式的基本性质可判断A,B,C,再利用特值法令可判断D,从而可得答案.【详解】解: a<b, 故A不符合题意,C符合题意; 故B不符合题意;当时,满足 而 故D不符合题意;故选C【点睛】本题考查的是利用不等式的基本性质判断变形是否正确,掌握“不等式的基本性质与特值法的运用”是解本题的关键.3、B【解析】略4、D【解析】【分析】根据不等式的基本性质逐项排查即可.【详解】解:A.在不等式的两边同时乘或除以同一个正数,不等号的方向不发生改变,这里应该是3a>3b,故A不正确,不符合题意;B.无法证明,故B选项不正确,不符合题意;C.当c=0时,不等式不成立,故C选项不正确,不符合题意;D.不等式的两边同时乘2再在不等式的两边同时3,不等式,成立,故D选项正确,符合题意.故选:D.【点睛】本题主要考查了不等式的性质,1.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变; 2.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;3.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变.5、B【解析】【分析】主要依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【详解】解:根据不等式的定义可知,所有式子中是不等式的是②4x+5>0; ③x<3,有2个.故选:B.【点睛】本题主要考查了不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子叫作不等式.6、C【解析】【分析】先求出3﹣2x=3(k﹣2)的解为x,从而推出,整理不等式组可得整理得:,根据不等式组无解得到k>﹣1,则﹣1<k≤3,再由整数k和是整数进行求解即可.【详解】解:解方程3﹣2x=3(k﹣2)得x,∵方程的解为非负整数,∴0,∴,把整理得:,由不等式组无解,得到k>﹣1,∴﹣1<k≤3,即整数k=0,1,2,3,∵是整数,∴k=1,3,综上,k=1,3,则符合条件的整数k的值的和为4.故选C.【点睛】本题主要考查了解一元一次方程,根据一元一次不等式组的解集情况求参数,解题的关键在于能够熟练掌握相关知识进行求解.7、B【解析】【分析】根据题意和不等式的性质,赋予特殊值,可以判断各个选项中的结论是否成立,从而可以解答本题.【详解】解:、都是实数,且,当为负数时,,故选项A错误;,则,故选项B正确;当,时,,故选项C错误;,时,,故选项D错误;故选:B.【点睛】本题考查不等式,解答本题的关键是明确题意,利用不等式的性质解答.8、D【解析】【分析】已知某市最高气温和最低气温,可知该市的气温的变化范围应该在最高气温和最低气温之间,且包括最高气温和最低气温.【详解】由题意,某市最高气温是33℃,最低气温是24℃,说明其它时间的气温介于两者之间,∴该市气温t(℃)的变化范围是:24≤t≤33;故选:D.【点睛】本题的关键在于准确理解题意,理解到当天的气温的变化范围应在最低气温和最低气温之间.9、D【解析】【分析】利用不等式的基本性质逐一判断即可.【详解】解:A. 若,则正确,故A不符合题意;B. 若,则正确,故B不符合题意;C. 若,则,正确,故C不符合题意;D. 若d,则,所以D错误,故D符合题意,故选:D.【点睛】本题考查不等式的性质,掌握相关知识是解题关键.10、C【解析】【分析】根据不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变解答.【详解】解:A、不等式a>b两边都乘-1,不等号的方向没有改变,不符合题意;B、不等式a>b两边都乘-1,不等号的方向没有改变,不符合题意;C、不等式a>b两边都乘2,不等号的方向不变,都减1,不等号的方向不变,符合题意;D、因为≥0,当=0时,不等式a>b两边都乘,不等式不成立,不符合题意;故选:C.【点睛】本题考查了不等式的基本性质.不等式两边同时乘以或除以同一个数或式子时,一定要注意不等号的方向是否改变.二、填空题1、2<x<3【解析】【分析】先标号,分别求出每个不等式的解集,再找到两个不等式解集的公共部分即不等式组的解集即可.【详解】解:由①得,x>2;由②得,x<3,不等式组的解集为2<x<3.故答案为2<x<3.【点睛】本题考查了解一元一次不等式组,明确不等式组的解法是解题的关键.2、2a﹣3≥0【解析】【分析】根据“a的2倍”即2a,再减去3,结合差是非负数,即大于等于零,得出答案.【详解】由题意可得:2a﹣3≥0.故答案为:2a﹣3≥0.【点睛】本题考查了用不等式表示不等关系,关键是掌握倍、差、非负数的含义.3、【解析】【详解】解:,,,最小整数解是,故答案为.【点睛】本题考查了一元一次不等式的整数解,解题的关键是求出不等式的解集.4、3x-2y≤0【解析】【分析】根据题意直接利用非正数的定义进而分析即可得出不等式.【详解】解:3x与2y的差是非正数,用不等式表示为3x-2y≤0.故答案为:3x-2y≤0.【点睛】本题主要考查由实际问题抽象出一元一次不等式,正确理解相关定义是解题的关键.5、4【解析】【分析】先求出不等式的解集,再求出不等式组的解集,找出不等式组的最大整数解即可.【详解】解: ,解不等式①得,x≥2,解不等式②得, ,∴不等式组的解集为,∴不等式组的最大整数解为4.故答案为:4.【点睛】本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.三、解答题1、 (1)能被包含.理由见解析(2)实数的取值范围是或【解析】【分析】(1)解方程组求得方程组的解为,不等式x+1≥0的解集为x≥﹣1,2和﹣1都在D内,即可证得C能被D包含;(2)解关于x,y的方程组得到它的解为,得到E:{a+1,a﹣l},解不等式组得它的解集为1≤x<4,根据题意得出a﹣1<1或a+1≥4,解得a<2或a≥3.(1)能被包含.理由如下:解方程组得到它的解为,,,不等式的解集为,,和都在内,能被包含;(2)解关于,的方程组得到它的解为,,,解不等式组得它的解集为,,不能被包含,且,或,或,所以实数的取值范围是或.【点睛】本题考查了新定义,解二元一次方程组和一元一次不等式(组),理解被包含的定义是解题关键,属于中档题.2、 (1)A、B两种型号的快递车每小时分别搬运100kg、80kg年货.(2)至少购进A型快递车6台.【解析】【分析】(1)设B种型号的快递车每小时搬运xkg年货,则A种型号的快递车每小时搬运(x+20)kg年货,利用“4台A型快递车每小时搬运的年货与5台B型快递车每小时搬运的年货数量相同”得出方程,进而得出答案;(2)根据“每小时搬运的年货不少于920kg”得出不等式,求出答案.(1)解:设B种型号的快递车每小时搬运xkg年货,则A种型号的快递车每小时搬运(x+20)kg年货,依题意得:4(x+20)=5x,解得:x=80,x+20=100,答:A、B两种型号的快递车每小时分别搬运100kg、80kg年货;(2)解:A型快递车a台,则B型快递车(10-a)台,依题意得:100a+80(10-a)≥920,解得:a≥6.答:至少购进A型快递车6台.【点睛】此题主要考查了一元一次方程的应用以及一元一次不等式的应用,正确得出方程以及得出不等式是解题关键.3、 (1)六(1)班的捐款额为420元,六(2)班的捐款额为480元(2)38人【解析】【分析】(1)设六(1)班的捐款额为元,从而可得六(2)班的捐款额为元,再根据合计总捐款额为900元建立方程,解方程即可得;(2)先求出六(1)班学生数最多不超过42人,再根据合计的学生总人数即可得出答案.(1)解:设六(1)班的捐款额为元,则六(2)班的捐款额为元,由题意得:,解得,则,答:六(1)班的捐款额为420元,六(2)班的捐款额为480元;(2)解:因为六(1)班学生平均每人捐款的金额不小于10元,所以六(1)班学生数最多不超过(人),所以六(2)班学生数至少是(人),答:六(2)班的学生数至少是38人.【点睛】本题考查了一元一次方程的应用、不等式的应用,正确建立方程和理解不等式的概念是解题关键.4、﹣1.5<x≤1,图见解析.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集最后在数轴上表示出不等式组的解集即可.【详解】解: 解不等式3x﹣4<5x﹣1,得:x>﹣1.5,解不等式,得:x≤1,则不等式组的解集为﹣1.5<x≤1,将其解集表示在数轴上如下:【点睛】本题主要考查了解一元一次不等式组,在数轴上表示出不等式组的解集,解题的关键在于能够熟练掌握求不等式组解集的方法.5、不等式组的解集是-2≤x<4,和为3【解析】【分析】先求出两个不等式的解集,再求其公共解,然后写出范围内的整数.【详解】解:,解不等式①得,x≥-2,解不等式②得,x<4,所以,不等式组的解集是-2≤x<4,所以,它的所有整数解的和是-2-1+0+1+2+3=3.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
相关试卷
这是一份初中第九章 三角形综合与测试练习题,共22页。试卷主要包含了若一个三角形的三个外角之比为3,如图,在ABC中,点D等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试习题,共20页。试卷主要包含了关于x的方程3﹣2x=3等内容,欢迎下载使用。
这是一份初中冀教版第十章 一元一次不等式和一元一次不等式组综合与测试同步测试题,共19页。试卷主要包含了不等式的最大整数解是,不等式组的解集在数轴上应表示为等内容,欢迎下载使用。