冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试同步练习题
展开
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试同步练习题,共19页。试卷主要包含了关于x的方程3﹣2x=3,如果,设m为整数,若方程组的解x等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若关于的一元一次不等式组的解集为,且关于的方程的解为非负整数,则符合条件的所有整数的和为( )A.2 B.7 C.11 D.102、下列四个说法:①若a=﹣b,则a2=b2;②若|m|+m=0,则m<0;③若﹣1<m<0,则m2<﹣m;④两个四次多项式的和一定是四次多项式.其中正确说法的个数是( )A.4 B.3 C.2 D.13、已知a>b,下列变形一定正确的是( )A.3a<3b B.4+a>4﹣b C.ac2>bc2 D.3+2a>3+2b4、如果a<b,c<0,那么下列不等式成立的是( )A.a+c<b B.a﹣c>b﹣cC.ac+1<bc+1 D.a(c﹣2)<b(c﹣2)5、关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组有解,则符合条件的整数k的值之和为( )A.5 B.4 C.3 D.26、如果、都是实数,且,那么下列结论中,正确的是( )A. B. C. D.7、下列式子中,是一元一次不等式的有( )①3a-2=4a+9;②3x-6>3y+7;③2x3<5;④x2>1;⑤2x+6>x.A.1个 B.2个 C.3个 D.4个8、设m为整数,若方程组的解x、y满足,则m的最大值是( )A.4 B.5 C.6 D.79、不等式3+2x≥1的解在数轴上表示正确的是( )A. B.C. D.10、在数轴上表示某不等式组的解集,如图所示,则这个不等式组可能是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式4x﹣3≤2x+1的非负整数解的和是 _____.2、如果a>b,那么﹣2a___﹣2b.(填“>”或“<”)3、把一些笔分给几名学生,如果每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,则共有学生___人.4、一件商品的成本价是30元,若按标价的八八折销售,至少可获得10%的利润;若按标价的九折销售,可获得不足20%的利润,设这件商品的标价为元,则x的取值范围是______________5、给出下列不等式:①x+1>x-x2;②y-1>3;③x+≥2;④x≤0;⑤3x-y<5,其中属于一元一次不等式的是:___.(只填序号)三、解答题(5小题,每小题10分,共计50分)1、说出下列不等式变形的依据:(1)由x-1>2,得x>3;(2)由-2x>-4,得x<2;(3)由-x<-1,得x>2;(4)由3x<x,得2x<0.2、南山荔枝,广东省深圳市南山区特产,中国国家地理标志产品,品种多样.共有6个品种,“糯米糍”和“妃子笑”是其中两个品种.某水果商从批发市场用8000元购进了“糯米糍”和“妃子笑”各200千克,“糯米糍”的进价比“妃子笑”的进价每千克多20元.“糯米糍”售价为每千克40元,“妃子笑”售价为每千克16元.(1)“糯米糍”和“妃子笑”的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了“糯米糍”和“妃子笑”各200千克,进价不变,但在运输过程中“妃子笑”损耗了20%.若“妃子笑”的售价不变,要想让第二次赚的钱不少于第一次所赚的钱,“糯米糍”的售价最少应为多少?3、如果一个不等式中含有绝对值,并且绝对值符号中含有未知数,我们定义这个不等式为绝对值不等式,小明在课外小组活动时探究发现:①|x|>a(a>0)的解集是x>a或x<﹣a;②|x|<a(a>0)的解集是﹣a<x<a.根据小明的发现,解决下列问题:(1)请直接写出下列绝对值不等式的解集;①|x|>3的解集是 ②|x|<的解集是 .(2)求绝对值不等式2|x﹣1|+1>9的解集.4、解下列不等式组,并在数轴上表示它们的解集(1)(2)5、关于x的方程的解大于1,求a的取值范围. -参考答案-一、单选题1、B【解析】【分析】先解关于的一元一次不等式组,再根据其解集是,得小于5;再解方程,根据其有非负整数解,得出的值,再求积即可.【详解】解:由,得:,由,得:,不等式组的解集为,,解得;解关于的方程得:,方程的解为非负整数,或3或6或9,解得或2或3.5或5,所以符合条件的所有整数的和,故选:B.【点睛】此题考查了解一元一次不等式组及一元一次方程的解,熟练掌握各自的解法是解本题的关键.2、C【解析】【分析】根据题意分别利用相反数的性质以及绝对值的代数意义和多项式的加法进行判断即可.【详解】解:①若a=﹣b,则a2=b2,说法正确;②若|m|+m=0,则m 0,说法错误;③若﹣1<m<0,则m2<﹣m,说法正确;④两个四次多项式的和不一定是四次多项式,说法错误;①③正确,共有2个.故选:C.【点睛】本题考查相反数的性质和不等式性质以及绝对值的代数意义和多项式的加法,熟练掌握相关的概念是解题的关键.3、D【解析】【分析】根据不等式的基本性质逐项排查即可.【详解】解:A.在不等式的两边同时乘或除以同一个正数,不等号的方向不发生改变,这里应该是3a>3b,故A不正确,不符合题意;B.无法证明,故B选项不正确,不符合题意;C.当c=0时,不等式不成立,故C选项不正确,不符合题意;D.不等式的两边同时乘2再在不等式的两边同时3,不等式,成立,故D选项正确,符合题意.故选:D.【点睛】本题主要考查了不等式的性质,1.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变; 2.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;3.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变.4、A【解析】【分析】根据不等式的性质,逐项判断即可求解.【详解】解:A、由a<b,c<0得到:a+c<b+0,即a+c<b,故本选项符合题意.B、当a=1,b=2,c=﹣3时,不等式a﹣c>b﹣c不成立,故本选项不符合题意.C、由a<b,c<0得到:ac+1>bc+1,故本选项不符合题意.D、由于c﹣2<﹣2,所以a(c﹣2)>b(c﹣2),故本选项不符合题意.故选:A【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.5、A【解析】【分析】先求出方程的解与不等式组的解集,再根据题意相确定的取值范围即可.【详解】解:解方程3﹣2x=3(k﹣2),得:,由题意得,解得:,解不等式,得:, 解不等式,得:,不等式组有解,,则,符合条件的整数的值的和为,故选A.【点睛】本题主要考查了一元一次方程的解、一元一次不等式组的整数解等知识点,明确题意、正确求解不等式成为解答本题的关键.6、B【解析】【分析】根据题意和不等式的性质,赋予特殊值,可以判断各个选项中的结论是否成立,从而可以解答本题.【详解】解:、都是实数,且,当为负数时,,故选项A错误;,则,故选项B正确;当,时,,故选项C错误;,时,,故选项D错误;故选:B.【点睛】本题考查不等式,解答本题的关键是明确题意,利用不等式的性质解答.7、A【解析】【分析】根据一元一次不等式的定义逐个判断即可.【详解】解:①3a-2=4a+9是方程;②3x-6>3y+7中有两个未知数;③2x3<5未知数的次数不是一次;④x2>1未知数的次数不是一次;⑤2x+6>x是一元一次不等式;故选:A.【点睛】本题考查了一元一次不等式的定义,注意:只含有一个未知数,并且所含未知数的项的最高次数是1,并且不等式的两边都是整式的不等式叫一元一次不等式.8、B【解析】【分析】先把m当做常数,解一元二次方程,然后根据得到关于m的不等式,由此求解即可【详解】解:把①×3得:③,用③+①得:,解得,把代入①得,解得,∵,∴,即,解得,∵m为整数,∴m的最大值为5,故选B.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.9、B【解析】【分析】不等式移项,合并同类项,把x系数化为1求出解集,表示在数轴上即可.【详解】解:不等式3+2x≥1,移项得:2x≥1﹣3,合并同类项得:2x≥﹣2,解得:x≥﹣1,数轴表示如下:.故选:B.【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.不等式的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.10、D【解析】【分析】分别解不等式求出不等式组的解集,对应数轴得到答案.【详解】解:解不等式,得x>4,解不等式2x-4<x,得x<4,解不等式x+10,解得x-1,解不等式x+10,解得x-1,∴不等式组无解,不等式组的解集为x>4,不等式组的解集为x-1,不等式组的解集为,由数轴可得不等式组的解集为,故选:D.【点睛】此题考查了求不等式组的解集,正确掌握不等式的性质求解不等式及利用数轴表示不等式的解集的方法是解题的关键.二、填空题1、3【解析】【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1得出不等式的解集,从而得出答案.【详解】解:4x﹣3≤2x+1移项,得:4x﹣2x≤1+3,合并同类项,得:2x≤4,系数化为1,得:x≤2,∴不等式的非负整数解为0、1、2,∴不等式的非负整数解的和为0+1+2=3,故答案为:3.【点睛】本题主要考查了一元一次不等式的整数解,解题的关键在于能够熟练掌握解一元一次不等式的方法.2、<【解析】【分析】根据不等式的性质得出即可.【详解】解:∵a>b,∴﹣2a<﹣2b,故答案为:<【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.3、11或12##12或11【解析】【分析】根据每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,得出5x+7≥6(x-1)+1,且6(x-1)+3>5x+7,分别求出即可.【详解】解:假设共有学生x人,根据题意得出:,解得:10<x≤12.因为x是正整数,所以符合条件的x的值是11或12,故答案为:11或12.【点睛】此题主要考查了一元一次不等式组的应用,根据题意找出不等关系得出不等式组是解决问题的关键.4、【解析】【分析】根据“八八折销售至少可获得10%的利润、九折销售可获得不足20%的利润”列不等式组求解可得.【详解】解:根据题意,得:解得:37.5≤x<40,故答案为:37.5≤x<40.【点睛】此题主要考查了一元一次不等式组的应用,关键是理解题意抓住题目中的关键语句,列出不等式组.此题用到的公式是:进价+利润=售价.5、②④【解析】【分析】根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就是一元一次不等式.【详解】①x+1>x-x2是一元二次不等式,故选项不符合题意;②y-1>3是一元一次不等式,故此选项符合题意;③x+≥2中不是整式,故选项不符合题意;④x≤0是一元一次不等式,故此选项符合题意;⑤3x-y<5;含两个未知数,故选项不符合题意.故答案为:②④【点睛】本题考查一元一次不等式的定义中的未知数的最高次数为1次,本题还要注意未知数的系数不能是0.三、解答题1、 (1)见解析(2)见解析(3)见解析(4)见解析【解析】【分析】(1)根据等式两边加上(或减去)同一个数,不等号方向不变求解;(2)根据不等式两边乘以(或除以)同一个负数,不等号方向改变求解;(3)根据不等式两边乘以(或除以)同一个负数,不等号方向改变求解;(4)根据等式两边加上(或减去)同一个含有字母的式子,不等号方向不变求解.(1)解:由x-1>2,得x>3,不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;(2)解:由-2x>-4,得x<2,不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)解:由-x<-1,得x>2,不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(4)解:由3x<x,得2x<0,不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.【点睛】本题主要考查了不等式的性质,正确掌握不等式的性质是解题关键.2、 (1)“糯米糍”的进价是30元/千克,“妃子笑”的进价是10元/千克,销售完后,该水果商共赚了3200元钱.(2)43.2元/千克【解析】【分析】(1)设“糯米糍”的进价是x元/千克,则“妃子笑”的进价是(x﹣20)元/千克,根据某水果商从批发市场用8000元购进了“糯米糍”和“妃子笑”各200千克,即可得出关于x的一元一次方程,解之即可得出x的值,将其代入(x﹣20)中可求出“妃子笑”的进价,再利用总利润=销售单价×销售数量﹣进货总价,即可求出全部售出后获得的利润;(2)设“糯米糍”的售价应为m元/千克,根据总利润=销售单价×销售数量﹣进货总价,结合第二次赚的钱不少于第一次所赚的钱,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.(1)解:设“糯米糍”的进价是x元/千克,则“妃子笑”的进价是(x﹣20)元/千克,依题意得:200x+200(x﹣20)=8000,解得:x=30,∴x﹣20=10.200×40+200×16﹣8000=3200(元).答:“糯米糍”的进价是30元/千克,“妃子笑”的进价是10元/千克,销售完后,该水果商共赚了3200元钱.(2)设“糯米糍”的售价应为m元/千克,依题意得:200m+200×(1﹣20%)×16﹣8000≥3200,解得:m≥43.2,答:“糯米糍”的售价最少应为43.2元/千克.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.3、 (1)①x>3或x<−3;②−<x<(2)x>5或x<−3.【解析】【分析】(1)根据题意即可得;(2)将2|x−1|的数字因数2化为1后,根据以上结论即可得.(1)解:①由探究发现,|x|>3的解集是x>3或x<−3;故答案为:x>3或x<−3;②由探究发现,|x|<的解集是−<x<.故答案为:−<x<.(2)解:2|x−1|+1>9,2|x−1|>9−1,2|x−1|>8,|x−1|>4,∴|x−1>4的解集可表示为x−1>4或x−1<−4,∴2|x−1|+1>9的解集为:x>5或x<−3.【点睛】本题主要考查解一元一次不等式,解题的关键是熟练掌握一元一次不等式的基本步骤和绝对值的性质.4、 (1);(2)无解.【解析】【分析】(1)求出每个不等式的解集,再求两个不等式解集的公共部分即可;(2)求出每个不等式的解集,再求两个不等式解集的公共部分即可.(1)解不等式①,得:解不等式②,得:所以不等式组的解集为:解集在数轴上表示如下:(2)解不等式①,得:解不等式②,得:所以不等式组的解集无解解集在数轴上表示如下:【点睛】本题考查了解一元一次不等式组,熟练掌握一元一次不等式的解法是解题的关键.5、a>0【解析】【分析】先解方程得出x=,根据方程的解大于1得出关于a的不等式,解之即可.【详解】解:解不等式6x+a−4=2x+2a,得x=,根据题意,得:>1,解得a>0.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
相关试卷
这是一份初中第十章 一元一次不等式和一元一次不等式组综合与测试巩固练习,共19页。试卷主要包含了现有甲,某矿泉水每瓶售价1.5元,现甲,已知三角形两边长分别为7,若,则不等式组的解集是,若,那么下列各式中正确的是,若,则下列式子一定成立的是等内容,欢迎下载使用。
这是一份2021学年第十章 一元一次不等式和一元一次不等式组综合与测试测试题,共18页。试卷主要包含了下列各式等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试随堂练习题,共16页。试卷主要包含了下列各数中,是不等式的解的是等内容,欢迎下载使用。