初中第十章 一元一次不等式和一元一次不等式组综合与测试巩固练习
展开
这是一份初中第十章 一元一次不等式和一元一次不等式组综合与测试巩固练习,共19页。试卷主要包含了现有甲,某矿泉水每瓶售价1.5元,现甲,已知三角形两边长分别为7,若,则不等式组的解集是,若,那么下列各式中正确的是,若,则下列式子一定成立的是等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知三条线段的长分别是4,4,m,若它们能构成三角形,则整数m的最大值是( )A.10 B.8 C.7 D.42、﹣(﹣a)和﹣b在数轴上表示的点如图所示,则下列判断正确的是( )A.﹣a<1 B.b﹣a>0 C.a+1>0 D.﹣a﹣b<03、若关于的一元一次不等式组的解集为,且关于的方程的解为非负整数,则符合条件的所有整数的和为( )A.2 B.7 C.11 D.104、现有甲、乙两种运输车将46吨物资运往A地.甲种运输车载重5吨,乙种运输车载重4吨,每种车都不能超载.已安排甲种车5辆,要一次性完成该物资的运输,则至少安排乙种车( )辆.A.5 B.6 C.7 D.85、某矿泉水每瓶售价1.5元,现甲、乙两家商场 给出优 惠政策:甲商场全部9折,乙商场20瓶以上的部分8折.老师要小明去买一些矿泉水,小明想了想觉得到乙商场购买比较优惠.则小明需要购买的矿泉水的数量x的取值范围是( )A.x>20 B.x>40 C.x≥40 D.x<406、已知三角形两边长分别为7、10,那么第三边的长可以是( )A.2 B.3 C.17 D.57、若,则不等式组的解集是( )A. B. C. D.无解8、若,那么下列各式中正确的是( )A. B.C. D.9、若,则下列式子一定成立的是( )A. B. C. D.10、在数轴上表示不等式的解集正确的是( ).A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、新双文具店所售文具款式新颖、价格实惠,深受学生喜爱.2020年,文具店购进甲、乙、丙、丁四种文具,甲与乙的销量之和等于丁的销量,丙的销量占丁销量的,四种文具的销量之和不少于2850件,不多于3540件,甲、乙两种文具的进价相同,均为丙与丁的进价之和,四种文具的进价均为正整数且丁文具的进价是偶数,店家购进这四种文具成本一共12012元,且四种文具全部售出;2021年,受疫情影响,文具店不再购进丙文具,每件甲文具进价是去年的倍,每件乙文具进价较去年上涨了20%,每件丁文具进价是去年的2倍,销量之比为4:3:10,其中甲、乙文具单件利润之比为3:4,最后三种文具的总利润率为60%,则甲、乙、丁单价之和为________元.(每种文具售价均为正整数)2、 的 与 的差不小于 ,用不等式表示为________________.3、不等式的非负整数解有______.4、安排学生住宿,若每间住3人,则还有13人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为_____.5、如果三角形的三条边长分别为,那么x的取值范围是______.三、解答题(5小题,每小题10分,共计50分)1、若不等式ax-2>0的解集为x<-2,求关于y的方程ay+2=0的解.2、美术小组准备到文具店购买铅笔和橡皮.已知1支铅笔的批发价比零售价低0.2元,1块橡皮的批发价比零售价低0.3元.如果购买60支铅笔和30块橡皮,那么都需按零售价购买,共支付105元;如果购买90支铅笔和60块橡皮,那么都需按批发价购买,共支付144元;那么有以下两种购买方案可供选择:方案一铅笔和橡皮都按批发价购买;方案二铅笔和橡皮都按零售价购买,总费用打m折.若根据方案一购买,共需支付144元.(1)铅笔和橡皮的批发价各是多少?(2)若根据方案二购买所需的费用不少于方案一所需的费用,求m的最小值.3、用适当的不等式表示下列数量关系:(1)x与-6的和大于2;(2)x的2倍与5的差是负数;(3)5a与6b的差是非正数(4)x的4倍小于34、解不等式组.5、解下列不等式组,并在数轴上表示它们的解集(1)(2) -参考答案-一、单选题1、C【解析】【分析】根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值.【详解】解:条线段的长分别是4,4,m,若它们能构成三角形,则,即又为整数,则整数m的最大值是7故选C【点睛】本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键.2、B【解析】【分析】化简﹣(﹣a)=a,根据数轴得到a<﹣1<﹣b<0,再结合有理数的加减、不等式的性质逐项分析可得答案.【详解】解:﹣(﹣a)=a,由数轴可得a<﹣1<﹣b<0,∵a<﹣1,∴﹣a>1,故A选项判断错误,不合题意;∵﹣b<0,∴b>0,b﹣a>0,故B正确,符合题意;∵a<﹣1,∴a+1<0,故C判断错误,不合题意;∵a<﹣b,∴a+b<0,∴﹣a﹣b>0,故D判断错误,不合题意.故选:B.【点睛】本题考查了有理数的加减法则、不等式的性质、用数轴表示数等知识,熟知相关知识并根据题意灵活应用是解题关键.3、B【解析】【分析】先解关于的一元一次不等式组,再根据其解集是,得小于5;再解方程,根据其有非负整数解,得出的值,再求积即可.【详解】解:由,得:,由,得:,不等式组的解集为,,解得;解关于的方程得:,方程的解为非负整数,或3或6或9,解得或2或3.5或5,所以符合条件的所有整数的和,故选:B.【点睛】此题考查了解一元一次不等式组及一元一次方程的解,熟练掌握各自的解法是解本题的关键.4、B【解析】【分析】现用甲,乙两种运输车将46吨抗旱物资运往灾区,此题的等量关系是:甲种车运输物资数+乙种车运输物资数≥46吨.设甲种运输车至少应安排x辆,根据不等关系就可以列出不等式,求出x的值.【详解】解:设乙种车安排了x辆,4x+5×5≥46解得x≥.因为x是正整数,所以x最小值是6.则乙种车至少应安排6辆.故选:B.【点睛】本题主要考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,理解汽车的载重量与货物的数量之间的关系是解决本题的关键.5、B【解析】略6、D【解析】【分析】根据三角形三边关系分析即可,三角形三边关系,两边之和大于第三边,三角形的两边差小于第三边.【详解】解:设第三边长为x,由题意得:∵三角形的两边分别为7,10,∴10−7<x<10+7,解得:3<x<17,符合条件的只有D.故选:D.【点睛】本题考查了解一元一次不等式组,三角形的三边关系,掌握三角形的三边关系是解题的关键.7、D【解析】【分析】根据求不等式组的解集方法:“大大小小找不到”判断即可”【详解】若,则不等式组的解集是无解.故选:D.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8、C【解析】【分析】根据不等式的性质判断.【详解】解:∵,∴a+1>b+1,故选项A错误;∵,∴-a<-b,故选项B错误;∵,∴,故选项C正确;∵,∴,故选项D错误;故选:C.【点睛】此题考查了不等式的性质,熟记不等式的性质是解题的关键.9、B【解析】【分析】根据不等式的性质依次分析判断.【详解】解:∵,∴a+1>b+1,故选项A不符合题意;∵,∴,故选项B符合题意;∵,∴-2a<-2b,故选项C不符合题意;∵,∴,故选项D不符合题意;故选:B.【点睛】此题考查了不等式的性质:不等式两边同时加上或减去同一个整式,不等号方向不变;不等式两边同时乘或除以同一个不为0的整正数,不等号方向不变;不等式两边同时乘或除以同一个不为0的负数,不等号方向改变.10、C【解析】【分析】根据不等式解集的表示方法依次判断.【详解】解:在数轴上表示不等式的解集的是C,故选:C.【点睛】此题考查了在数轴上表示不等式的解集,正确掌握不等式解集的表示方法是解题的关键.二、填空题1、【解析】【分析】设2020年丙的销量为件,则丁的销量为件,甲与乙的销量之和为件,设2020年丙的进价为元,丁的进价为元,则甲与乙的进价均为元,再建立不等式组求解甲,乙文具的进价为5元,丙文具的进价为3元,丁文具的进价为2元,设甲,乙,丁的销售单价分别为元,元,元,再建立方程组可得利用二元一次方程组的正整数求解 从而可得答案.【详解】解:设2020年丙的销量为件,则丁的销量为件,甲与乙的销量之和为件, 解得: 且为正整数,则 设2020年丙的进价为元,丁的进价为元,则甲与乙的进价均为元, 而 即 四种文具的进价均为正整数且丁文具的进价是偶数, 而 时,不符合题意,舍去, 为正整数,则或 当时,代入中可得 当时,代入中可得 舍去,所以甲,乙文具的进价为5元,丙文具的进价为3元,丁文具的进价为2元,所以2021年,甲文具的进价为(元),乙文具的进价为(元),丁文具的进价唯一(元), 甲,乙,丁的销量之比为4:3:10,则设甲,乙,丁的销量分别为件,件,件, 总的进价为: 总的销售额为: 设甲,乙,丁的销售单价分别为元,元,元, 甲、乙文具单件利润之比为3:4, 且 而 结合①,②可得: 即 且 每种文具售价均为正整数,且 此时 都不符合题意;所以: 故答案为:【点睛】本题考查的是三元一次方程组的应用,二元一次方程的正整数解问题,不等式组的应用,理解题意,设出恰当的未知数,建立方程组寻求各未知量之间的关系是解本题的关键.2、【解析】【分析】直接利用“x的”即x,再利用差不小于5,即大于等于5,进而得出答案.【详解】解:由题意可得:.故答案为:.【点睛】本题考查了由实际问题抽象出一元一次不等式,正确理解题意是解题的关键.3、0,1,2,3【解析】【分析】先求出不等式的解集,再根据非负整数的定义得到答案.【详解】解:,2x<8,x<4,∴不等式的非负整数解有0,1,2,3,故答案为:0,1,2,3.【点睛】此题考查了解不等式,求不等式的非负整数解,正确解不等式是解题的关键.4、5或6【解析】【分析】设共有间宿舍,则共有个学生,然后根据每间住6人,则还有一间不空也不满,列出不等式组进行求解即可.【详解】解:设共有间宿舍,则共有个学生,依题意得:,解得:.又为正整数,或6.故答案为:5或6.【点睛】本题主要考查了一元一次不等式组的应用,解题的关键在于能够准确根据题意列出不等式组进行求解.5、【解析】【分析】根据三角形的三边关系列出不等式组,解不等式组即可求解【详解】解:根据题意得:,即.故答案为:.【点睛】考查了三角形三边关系,本题需要理解的是如何根据已知的两条边求第三边的范围.三、解答题1、y=2【解析】【分析】根据已知不等式解集确定出a的值,代入方程计算即可求出y的值.【详解】解∵不等式ax-2>0,即ax>2的解集为x<-2,∴,∴a=-1,代入方程得:-y+2=0,解得:y=2.【点睛】本题考查了一元一次不等式的解集和一元一次方程,解题关键是根据不等式的解集求出a的值.2、 (1)铅笔的批发价为每支0.8元,橡皮的批发价为每块1.2元;(2)所以m的最小值是8.【解析】【分析】(1)设铅笔的批发价为每支x元,橡皮的批发价为每块y元,根据题意列二元一次方程组求解即可;(2)根据题意列不等式求解即可.(1)解:设铅笔的批发价为每支x元,橡皮的批发价为每块y元.根据题意,得方程组,解方程组,得,答:铅笔的批发价为每支0.8元,橡皮的批发价为每块1.2元;(2)解:根据题意,得不等式(90×1+60×1.5)· ≥144.解不等式,得m≥8.所以m的最小值是8.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准关系,正确列出一元一次不等式.3、 (1)x-6>2(2)2x-5<0(3)5a-6b≤0(4)4x<3【解析】【分析】(1)根据x与−6的和得出x−6,再根据x与−6的和大于2得出x−6>2;(2)先表示出x的2倍为2x,再表示出与5的差为2x−5,再根据关键词“是负数”,列出不等式即可;(3)先表示出5a与6b的差是5a-6b,是非正数得出5a-6b≤0;(4)先表示出x的4倍是4x,再根据x的4倍小于3得出4x<3.(1)解:根据题意得:x-6>2;(2)解:由题意得:2x-5<0;(3)解:由题意得:5a-6b≤0.(4)解:由题意得:4x<3.【点睛】本题考查了由实际问题抽象出一元一次不等式,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.4、【解析】【分析】分别对两个一元一次不等式进行求解,将两个不等式的解中公共的部分表示出来即可.【详解】解:∵∴,;∵∴,;∴原不等式组的解为:.【点睛】本题考查了解一元一次不等式组.解题的关键在于正确求解出两个不等式的解.5、 (1);(2)无解.【解析】【分析】(1)求出每个不等式的解集,再求两个不等式解集的公共部分即可;(2)求出每个不等式的解集,再求两个不等式解集的公共部分即可.(1)解不等式①,得:解不等式②,得:所以不等式组的解集为:解集在数轴上表示如下:(2)解不等式①,得:解不等式②,得:所以不等式组的解集无解解集在数轴上表示如下:【点睛】本题考查了解一元一次不等式组,熟练掌握一元一次不等式的解法是解题的关键.
相关试卷
这是一份数学冀教版第十章 一元一次不等式和一元一次不等式组综合与测试精练,共19页。试卷主要包含了若,则下列式子一定成立的是,下列命题中,假命题是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课堂检测,共17页。试卷主要包含了下列说法中错误的是,关于x的方程3﹣2x=3等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试随堂练习题,共17页。试卷主要包含了下列四个说法,不等式4x-8≤0的解集是等内容,欢迎下载使用。