初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试单元测试随堂练习题
展开
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试单元测试随堂练习题,共18页。试卷主要包含了下列说法中不正确的个数有,不等式﹣2x+4<0的解集是等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果x>y,则下列不等式正确的是( )A.x﹣1<y﹣1 B.5x<5y C. D.﹣2x>﹣2y2、对有理数a,b定义运算:a✬b=ma +nb,其中m,n是常数,如果3✬4=2,5✬8>2,那么n的取值范围是( )A.n> B.n< C.n>2 D.n<23、关于x的一元一次不等式的解集在数轴上表示为( )A. B.C. D.4、在数轴上表示某不等式组的解集,如图所示,则这个不等式组可能是( )A. B. C. D.5、把不等式组的解集表示在数轴上,正确的是( )A. B.C. D.6、下列说法中不正确的个数有( )①有理数的倒数是②绝对值相等的两个数互为相反数③绝对值既是它本身也是它的相反数的数只有0④几个有理数相乘,若有奇数个负因数,则乘积为负数⑤若,则A.1个 B.2个 C.3个 D.4个7、不等式﹣2x+4<0的解集是( )A.x> B.x>﹣2 C.x<2 D.x>28、若方程组的解满足,则k的值可能为( )A.-1 B.0 C.1 D.29、把某个关于x的不等式的解集表示在数轴上如图所示,则该不等式的解集是( )A.x≥﹣2 B.x>﹣2 C.x<﹣2 D.x≤﹣210、如果、都是实数,且,那么下列结论中,正确的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式组的解集为_______.2、不等式的非负整数解是__.3、 的 与 的差不小于 ,用不等式表示为________________.4、若不等式的最小整数解是,不等式的最大负整数解是,则_____.5、不等式的最大整数解是_______.三、解答题(5小题,每小题10分,共计50分)1、解不等式组:,并求出它的所有整数解的和.2、解不等式组:,并将其解集在数轴上表示出来.3、 “学党史,办实事”,为解决停车难问题,某区政府治堵办对老旧小区新增停车位给予补贴,对于通过划线方式新增的和建设改造新增的给予不同的补贴.划线4个和建设改造3个,共补贴8000元;划线1个和建设改造1个,共补贴2500元.(1)政府对划线新增一个停车位和建设改造新增一个停车位分别补贴多少元?(2)在(1)的条件下,政府计划对老旧小区一共新增车位100个,建设改造新增的停车位不得少于划线新增停车位的1.5倍,且政府补贴不超过143000元,则老旧小区新增停车位共有几种方案?4、对于一个三位正整数n,如果n满足:它的百位数字、十位数字之和与个位数字的差等于6,那么称这个数n为“开心数”,例如:n1=936,∵9+3﹣6=6,∴936是“开心数”:n2=602,∵6+0﹣2=4≠6,∴602不是“开心数”.(1)判断666、785是否为“开心数”?请说明理由;(2)若将一个“开心数”m的个位数的两倍放到百位,原来的百位数变成十位数,原来的十位数变成个位数,得到一个新的三位数s(例如;若m=543,则s=654),若s也是一个“开心数”,求满足条件的所有m的值5、解不等式:,并把它的解集在数轴上表示出来. -参考答案-一、单选题1、C【解析】【分析】根据不等式的性质解答.①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A.∵x>y,∴x﹣1>y﹣1,故本选项不符合题意;B.∵x>y,∴5x>5y,故本选项不符合题意;C.∵x>y,∴,故本选项符合题意; D.∵x>y,∴﹣2x<﹣2y,故本选项不符合题意;故选:C.【点睛】此题考查了不等式的性质,熟记不等式的性质并正确应用是解题的关键.2、A【解析】【分析】先根据新运算的定义和3✬4=2将用表示出来,再代入5✬8>2可得一个关于的一元一次不等式,解不等式即可得.【详解】解:由题意得:,解得,由5✬8>2得:,将代入得:,解得,故选:A.【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键.3、B【解析】【分析】由题意根据解一元一次不等式基本步骤:移项、合并同类项,系数化为1求得不等式的解集,进而在数轴上表示即可得出答案.【详解】解:,移项得:,合并得:,解得:,在数轴上表示为:故选:B.【点睛】本题考查解一元一次不等式,熟练掌握一元一次不等式解题步骤,移项、合并同类项、把x系数化为1是解题的关键.4、D【解析】【分析】分别解不等式求出不等式组的解集,对应数轴得到答案.【详解】解:解不等式,得x>4,解不等式2x-4<x,得x<4,解不等式x+10,解得x-1,解不等式x+10,解得x-1,∴不等式组无解,不等式组的解集为x>4,不等式组的解集为x-1,不等式组的解集为,由数轴可得不等式组的解集为,故选:D.【点睛】此题考查了求不等式组的解集,正确掌握不等式的性质求解不等式及利用数轴表示不等式的解集的方法是解题的关键.5、D【解析】略6、B【解析】【分析】由倒数的定义可判断①,由绝对值的含义可判断②③,由有理数的乘法中积的符号确定方法可判断④,由不等式的基本性质可判断⑤,从而可得答案.【详解】解:因为 所以有理数的倒数是,故①正确;不符合题意绝对值相等的两个数互为相反数或者相等,故②不正确;符合题意;绝对值既是它本身也是它的相反数的数只有0,故③正确;不符合题意;几个不为零有理数相乘,若有奇数个负因数,则乘积为负数,若其中一个因数为0,则结果为0,故④不正确;符合题意;若,则,故⑤正确;不符合题意;所以②④符合题意故选: B.【点睛】本题考查的是倒数的含义,绝对值的含义,有理数乘法中积的符号确定,不等式的性质,掌握以上基础知识是解本题的关键.7、D【解析】【分析】首先通过移项得到,然后利用不等式性质进一步化简即可得出答案.【详解】解:移项可得:,两边同时除以-2可得:,∴原不等式的解集为:,故选:D.【点睛】本题主要考查了解一元一次不等式,熟练掌握相关方法是解题关键.8、D【解析】【分析】将两个方程组相加得到:,再由即可求出进而求解.【详解】解:由题意可知:,将①+②得到:,∵,∴,解得,故选:D.【点睛】本题考查二元一次方程组的解法及不等式的解法,解题关键是求出,进而求出k的取值范围.9、B【解析】【分析】观察数轴上x的范围即可得到答案.【详解】解:观察数轴可发现表示的是从-2(空心)开始向右,故该不等式的解集是,故选B.【点睛】本题主要考查对在数轴上表示不等式的解集的理解和掌握,能根据数轴上不等式的解集得出答案是解此题的关键.10、B【解析】【分析】根据题意和不等式的性质,赋予特殊值,可以判断各个选项中的结论是否成立,从而可以解答本题.【详解】解:、都是实数,且,当为负数时,,故选项A错误;,则,故选项B正确;当,时,,故选项C错误;,时,,故选项D错误;故选:B.【点睛】本题考查不等式,解答本题的关键是明确题意,利用不等式的性质解答.二、填空题1、【解析】【分析】先分别求出每一个不等式的解集,然后再根据“同大取大、同小取小、大小小大中间找、大大小小找不到”确定不等式组的解集即可.【详解】解:由,得:,由,得:,∴不等式组的解集为.故填:.【点睛】本题主要考查了解一元一次不等式组,掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的关键.2、,1,2【解析】【分析】由题意根据解一元一次不等式基本步骤:移项、合并同类项可得答案.【详解】解:移项得:,合并同类项得:,故不等式的非负整数解是,1,2.故答案为:x=0,1,2.【点睛】本题主要考查解一元一次不等式的基本能力,注意掌握解不等式的基本步骤是解题的关键.3、【解析】【分析】直接利用“x的”即x,再利用差不小于5,即大于等于5,进而得出答案.【详解】解:由题意可得:.故答案为:.【点睛】本题考查了由实际问题抽象出一元一次不等式,正确理解题意是解题的关键.4、3【解析】【分析】根据不等求得的取值范围,从而可以得到、的值,进而求得的值.【详解】解:,移项,得,合并同类项,得,,不等式的最小整数解是,,,移项,得,合并同类项,得,系数化为1,得,,不等式的最大负整数解是,,,故答案为:3.【点睛】本题考查一元一次不等式的整数解,解题的关键是明确解一元一次不等式的方法.5、2【解析】【分析】首先根据不等式求解不等式,再根据不等式的解集写出最大的整数解.【详解】解:移项,得:,合并同类项,得:,系数化成1得:,则最大整数解是:2.故答案是:2.【点睛】本题主要考查不等式的整数解,关键在于求解不等式.三、解答题1、不等式组的解集是-2≤x<4,和为3【解析】【分析】先求出两个不等式的解集,再求其公共解,然后写出范围内的整数.【详解】解:,解不等式①得,x≥-2,解不等式②得,x<4,所以,不等式组的解集是-2≤x<4,所以,它的所有整数解的和是-2-1+0+1+2+3=3.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).2、﹣2<x≤4,数轴见解析【解析】【分析】求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:,由①得,x>﹣2;由②得,x≤4,故此不等式组的解集为:﹣2<x≤4.在数轴上表示为:.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、 (1)政府对划线新增一个停车位补贴500元,对建设改造新增一个停车位补贴2000元(2)共有3种方案【解析】【分析】(1)设政府对划线新增一个停车位补贴x元,对建设改造新增一个停车位补贴y元,根据“划线4个和建设改造3个,共补贴8000元;划线1个和建设改造1个,共补贴2500元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设老旧小区划线新增m个停车位,则建设改造新增(100-m)个停车位,根据“建设改造新增的停车位不得少于划线新增停车位的1.5倍,且政府补贴不超过143000元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可得出老旧小区新增停车位方案的个数.(1)设政府对划线新增一个停车位补贴元,对建设改造新增一个停车位补贴元,依题意得:,解得:.答:政府对划线新增一个停车位补贴500元,对建设改造新增一个停车位补贴2000元.(2)设老旧小区划线新增个停车位,则建设改造新增个停车位,依题意得:,解得:.又为整数,可以为38,39,40,老旧小区新增停车位共有3种方案.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.4、 (1)666是“开心数”,785不是“开心数”,理由见解析(2)464和532【解析】【分析】(1)根据“开心数”的定义即可得;(2)设的百位数字为,十位数字为,个位数字为,从而可得的百位数字为,十位数字为,个位数字为,再根据“开心数”的定义列出等式,将都用表示出来,然后根据求出的取值范围,最后根据为正整数进行分析即可得.(1)解:666是“开心数”,785不是“开心数”,理由如下:,是“开心数”,,不是“开心数”.(2)解:设的百位数字为,十位数字为,个位数字为,则的百位数字为,十位数字为,个位数字为,和都是“开心数”,,解得,,,,解得,又为正整数,所有符合条件的取值为,当时,,则,当时,,则,综上,满足条件的所有的值为464和532.【点睛】本题考查了一元一次不等式组的应用、三元一次方程组的应用等知识点,掌握理解“开心数”的定义是解题关键.5、,图见解析【解析】【分析】根据题意先求出不等式的解集,再在数轴上表示出不等式的解集即可.【详解】解:,移项,得,合并同类项,得,系数化成1,得,在数轴上表示不等式的解集为:.【点睛】本题考查解一元一次不等式和在数轴上表示不等式的解集,能根据不等式的性质求出不等式的解集是解答此题的关键.
相关试卷
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试同步测试题,共18页。试卷主要包含了若,则下列式子一定成立的是,现有甲,下列各数中,是不等式的解的是等内容,欢迎下载使用。
这是一份数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试当堂达标检测题,共17页。试卷主要包含了现有甲等内容,欢迎下载使用。
这是一份七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课后复习题,共17页。试卷主要包含了下列各式,关于x的方程3﹣2x=3,,那么等内容,欢迎下载使用。