数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试测试题
展开
这是一份数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试测试题,共16页。试卷主要包含了下列各式,不等式组的最小整数解是等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果a<b,那么下列不等式中不成立的是( )A.3a<3b B.-3a<-3b C.-a>-b D.3+a<3+b2、一只纸箱质量为,放入一些苹果后,纸箱和苹果的总质量不能超过.若每个苹果的质量为,则这只纸箱内能装苹果( )A.最多27个 B.最少27个 C.最多26个 D.最少26个3、﹣(﹣a)和﹣b在数轴上表示的点如图所示,则下列判断正确的是( )A.﹣a<1 B.b﹣a>0 C.a+1>0 D.﹣a﹣b<04、已知a,b都是实数,且a<b,则下列不等式的变形正确的是( )A.a﹣1>b﹣1 B.﹣a+2<﹣b+2 C.3a<3b D.5、下列各式:①1﹣x:②4x+5>0;③x<3;④x2+x﹣1=0,不等式有( )个.A.1 B.2 C.3 D.46、某市最高气温是33℃,最低气温是24℃,则该市气温t(℃)的变化范围是( )A.t>33 B.t≤24 C.24<t<33 D.24≤t≤337、如果不等式组的解集是,那么a的值可能是( )A. B.0 C.﹣0.7 D.18、若m>n,则下列不等式不成立的是( )A.m+4>n+4 B.﹣4m<﹣4n C. D.m﹣4<n﹣49、不等式组的最小整数解是( )A.5 B.0 C. D.10、将不等式的解集表示在数轴上,正确的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式的最大整数解是_______.2、不等式的最小整数解是______.3、若不等式组无解,则m的取值范围是______.4、按照下面给定的计算程序,当时,输出的结果是_____;使代数式的值小于20的最大整数x是__________.5、如果关于x的不等式mx﹣2m>x﹣2的解集是x<2,那么m的取值范围是______.三、解答题(5小题,每小题10分,共计50分)1、小明早上七点骑自行车从家出发,以每小时18千米的速度到距家7千米的学校上课,行至距学校1千米的地方时,自行车突然发生故障,小明只得改为步行前往学校,如果他想在7点30分赶到学校,那么他每小时步行的速度至少是多少千米?2、用适当的不等式表示下列数量关系:(1)x与-6的和大于2;(2)x的2倍与5的差是负数;(3)5a与6b的差是非正数(4)x的4倍小于33、解不等式:,并把它的解集在数轴上表示出来.4、求不等式组的解集.5、若不等式ax-2>0的解集为x<-2,求关于y的方程ay+2=0的解. -参考答案-一、单选题1、B【解析】【分析】根据不等式的性质,加减运算不等号不变,乘除运算,正数不等号不变,负号,不等号一定改变,判断B不成立.【详解】∵a<b,3是正数,∴3a<3b,故A不符合题意;∵a<b,-3是负数,∴-3a>-3b,故B不成立,符合题意;∵a<b,-1是负数,∴-a>-b,故C成立,不符合题意;∵a<b,3是正数,∴3+a<3+b,故D成立,不符合题意;故选B.【点睛】本题考查了不等式的基本性质,熟练掌握性质,特别是负数参与计算的不等式问题,注意改变不等号的方向是解题的关键.2、C【解析】【分析】设这只纸箱内能装苹果x个,则根据不等关系:纸箱质量+所装苹果质量≤9,可建立不等式,解不等式即可,从而可得结果.【详解】设这只纸箱内能装苹果x个,由题意可得:1+0.3x≤9解不等式得:由于x只能取正整数所以x为不超过26的正整数时,均满足纸箱和苹果的总质量不能超过即这只纸箱内最多能装苹果26个故选:C【点睛】本题考查了一元一次不等式的应用,根据题意找出不等关系并列出不等式是关键,但要注意所求量为整数.3、B【解析】【分析】化简﹣(﹣a)=a,根据数轴得到a<﹣1<﹣b<0,再结合有理数的加减、不等式的性质逐项分析可得答案.【详解】解:﹣(﹣a)=a,由数轴可得a<﹣1<﹣b<0,∵a<﹣1,∴﹣a>1,故A选项判断错误,不合题意;∵﹣b<0,∴b>0,b﹣a>0,故B正确,符合题意;∵a<﹣1,∴a+1<0,故C判断错误,不合题意;∵a<﹣b,∴a+b<0,∴﹣a﹣b>0,故D判断错误,不合题意.故选:B.【点睛】本题考查了有理数的加减法则、不等式的性质、用数轴表示数等知识,熟知相关知识并根据题意灵活应用是解题关键.4、C【解析】【分析】利用不等式的基本性质可判断A,B,C,再利用特值法令可判断D,从而可得答案.【详解】解: a<b, 故A不符合题意,C符合题意; 故B不符合题意;当时,满足 而 故D不符合题意;故选C【点睛】本题考查的是利用不等式的基本性质判断变形是否正确,掌握“不等式的基本性质与特值法的运用”是解本题的关键.5、B【解析】【分析】主要依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【详解】解:根据不等式的定义可知,所有式子中是不等式的是②4x+5>0; ③x<3,有2个.故选:B.【点睛】本题主要考查了不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子叫作不等式.6、D【解析】【分析】已知某市最高气温和最低气温,可知该市的气温的变化范围应该在最高气温和最低气温之间,且包括最高气温和最低气温.【详解】由题意,某市最高气温是33℃,最低气温是24℃,说明其它时间的气温介于两者之间,∴该市气温t(℃)的变化范围是:24≤t≤33;故选:D.【点睛】本题的关键在于准确理解题意,理解到当天的气温的变化范围应在最低气温和最低气温之间.7、C【解析】【分析】根据不等式组解集的确定方法:大大取大可得,再在选项中找出符合条件的数即可.【详解】解:∵不等式组的解集是,∴a≤,而,故选:C.【点睛】本题考查一元一次不等式组的解法,理解一元一次不等式组的解集的意义是正确解答的前提.8、D【解析】【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A.∵m>n,∴m+4>n+4,故该选项正确,不符合题意;B.∵m>n,∴,故该选项正确,不符合题意;C.∵m>n,∴,故该选项正确,不符合题意;D.∵m>n,∴,故该选项错误,符合题意;故选:D.【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.9、C【解析】【分析】分别求出各不等式的解集,再求出其公共解集,然后求出最小整数解即可.【详解】解:解不等式,得:,解不等式,得:,故不等式组的解集为:,则该不等式组的最小整数解为:.故选:C.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10、D【解析】【分析】先求出不等式的解集,然后画出数轴,并在数轴上表示出不等式的解集.【详解】解:,解得:,表示在数轴上,如图所示:.故选:D.【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.不等式的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.二、填空题1、2【解析】【分析】首先根据不等式求解不等式,再根据不等式的解集写出最大的整数解.【详解】解:移项,得:,合并同类项,得:,系数化成1得:,则最大整数解是:2.故答案是:2.【点睛】本题主要考查不等式的整数解,关键在于求解不等式.2、3【解析】【分析】先求此不等式的解集,再确定最小的整数解.【详解】解:,此不等式的最小整数解为3.故答案为:3【点睛】本题考查了解一元一次不等式,正确解一元一次不等式是解本题的关键.3、【解析】【分析】求得第一个不等式的解集,借助数轴即可求得m的取值范围.【详解】解不等式,得x>2因不等式组无解,把两个不等式的解集在数轴上表示出来如下:观察图象知,当m≤2时,满足不等式组无解故答案为:【点睛】本题考查了根据不等式组解的情况确定参数的取值范围,借助数轴数形结合是关键.4、 1 7【解析】【分析】当时,代数式的值,根据1<20,可确定输出的值为1,列不等式,求解即可得答案.【详解】解:当时,,∵,∴当时,输出的值为1,,移项合并得,系数化1得,∴x最大整数=7.故1;7.【点睛】本题考查流程图与代数式求值,列不等式,不等式的最大整数解,掌握代数式求值,列不等式是解题关键.5、m<1【解析】【分析】根据不等式的基本性质,两边都除以后得到,可知,解之可得.【详解】解:,移项得,,∴,∵不等式的解集为,∴,即,故答案为:.【点睛】题目主要考查不等式的性质及解不等式,熟练掌握不等式的性质是解题关键.三、解答题1、小明每小时步行的速度至少是6千米.【解析】【分析】设小明步行的速度为x千米/时,利用路程=速度×时间,结合小明想在7点30分之前赶到学校,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:设小明步行的速度为x千米/时,依题意得:(7-1)+(-)x≥7,解得:x≥6.答:每小时步行的速度至少是6千米.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.2、 (1)x-6>2(2)2x-5<0(3)5a-6b≤0(4)4x<3【解析】【分析】(1)根据x与−6的和得出x−6,再根据x与−6的和大于2得出x−6>2;(2)先表示出x的2倍为2x,再表示出与5的差为2x−5,再根据关键词“是负数”,列出不等式即可;(3)先表示出5a与6b的差是5a-6b,是非正数得出5a-6b≤0;(4)先表示出x的4倍是4x,再根据x的4倍小于3得出4x<3.(1)解:根据题意得:x-6>2;(2)解:由题意得:2x-5<0;(3)解:由题意得:5a-6b≤0.(4)解:由题意得:4x<3.【点睛】本题考查了由实际问题抽象出一元一次不等式,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.3、,数轴见解析【解析】【分析】先去分母,再去括号,移项、合并同类项,把的系数化为1.【详解】解:去分母得,,去括号得,,移项、合并同类项得,,把的系数化为1得,.在数轴上表示此不等式的解集如下:【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.不等式的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.4、-7≤x<1【解析】【分析】先求出每个一元一次不等式的解集,再求出它们公共部分的解集即可.【详解】解:解①,得x<1,解②,得x≥-7,所以不等式组的解集为-7≤x<1.【点睛】本题考查解一元一次不等式组,熟练掌握一元一次不等式组的解法,正确得出公共部分的解集是解答的关键.5、y=2【解析】【分析】根据已知不等式解集确定出a的值,代入方程计算即可求出y的值.【详解】解∵不等式ax-2>0,即ax>2的解集为x<-2,∴,∴a=-1,代入方程得:-y+2=0,解得:y=2.【点睛】本题考查了一元一次不等式的解集和一元一次方程,解题关键是根据不等式的解集求出a的值.
相关试卷
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课后复习题,共15页。试卷主要包含了不等式4x-8≤0的解集是,若,则下列式子一定成立的是,如果等内容,欢迎下载使用。
这是一份初中冀教版第十章 一元一次不等式和一元一次不等式组综合与测试同步训练题,共17页。试卷主要包含了下列不等式是一元一次不等式的是,如图,数轴上表示的解集是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试课时练习,共18页。试卷主要包含了已知c<a<b<0,若M=|a,已知,,那么的值为,如果x2+kx﹣10=,把多项式分解因式,其结果是等内容,欢迎下载使用。