初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试练习题
展开第十章一元一次不等式和一元一次不等式组综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如果x>y,则下列不等式正确的是( )
A.x﹣1<y﹣1 B.5x<5y C. D.﹣2x>﹣2y
2、若,,则下列不等式不一定成立的是( )
A. B. C. D.
3、已知a,b都是实数,且a<b,则下列不等式的变形正确的是( )
A.a﹣1>b﹣1 B.﹣a+2<﹣b+2 C.3a<3b D.
4、下列不是不等式5x-3<6的一个解的是( )
A.1 B.2 C.-1 D.-2
5、,那么( )
A. B. C. D.无法确定
6、已知,那么下列各式中,不一定成立的是( )
A. B. C. D.
7、不等式﹣2x+4<0的解集是( )
A.x> B.x>﹣2 C.x<2 D.x>2
8、已知x=1是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=4不是这个不等式的解,则a的取值范围是( )
A.a<﹣2 B.a≤1 C.﹣2<a≤1 D.﹣2≤a≤1
9、若关于的方程有负分数解,关于的不等式组的解集为,则符合条件的所有整数的个数为( )
A.3 B.4 C.6 D.7
10、已知三角形两边长分别为7、10,那么第三边的长可以是( )
A.2 B.3 C.17 D.5
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若不等式的最小整数解是,不等式的最大负整数解是,则_____.
2、一次中学生宪法知识竞赛中共有20道题,每一题答对得5分,答错或不答都扣3分.若小丽答了所有的题,要想获得优胜奖(75分及以上),则她至少要答对 _____道题.
3、把一些笔分给几名学生,如果每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,则共有学生___人.
4、 “a与b的2倍的和大于1”用不等式可表示为________.
5、按下面的程序计算,若开始输入的值为正整数,
规定:程序运行到“判断结果是否大于10”为一次运算,当时,输出结果____.若经过2次运算就停止,则可以取的所有值是____.
三、解答题(5小题,每小题10分,共计50分)
1、解不等式:.
2、说出下列不等式变形的依据:
(1)由x-1>2,得x>3;
(2)由-2x>-4,得x<2;
(3)由-x<-1,得x>2;
(4)由3x<x,得2x<0.
3、解不等式组:,并把不等式组的解集表示在数轴上.
4、(1)解不等式:5x+3≥2(x+3).
(2)解不等式2x-1>.
5、在“爱心传递”活动中,某校学生积极捐款. 其中六年级的两个班级的捐款情况如下表:
班 级 | 人数 | 捐款总额(元) | 人均捐款额(元) |
(1)班 |
| ||
(2)班 |
|
|
|
合计 | 80 | 900 | 11.25 |
小杰在统计时不小心污损了其中的部分数据,但他还记得以下信息:
信息一:六(2)班的捐款额比六(1)班多60元;
信息二:六(1)班学生平均每人捐款的金额不小于10元;
请根据表格中留下的数据和以上信息,帮助小杰同学解决下列问题:
(1)六(1)班和六(2)班的捐款总额各是多少元?
(2)六(2)班的学生数至少是多少人?
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据不等式的性质解答.①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.
【详解】
解:A.∵x>y,
∴x﹣1>y﹣1,故本选项不符合题意;
B.∵x>y,
∴5x>5y,故本选项不符合题意;
C.∵x>y,
∴,故本选项符合题意;
D.∵x>y,
∴﹣2x<﹣2y,故本选项不符合题意;
故选:C.
【点睛】
此题考查了不等式的性质,熟记不等式的性质并正确应用是解题的关键.
2、D
【解析】
【分析】
根据不等式的性质,逐项判断即可求解.
【详解】
解:A、若,,则,故本选项正确,不符合题意;
B、若,,则,故本选项正确,不符合题意;
C、若,则 ,若,则,故本选项正确,不符合题意;
D、若,,当 时,,故本选项错误,符合题意;
故选:D
【点睛】
本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.
3、C
【解析】
【分析】
利用不等式的基本性质可判断A,B,C,再利用特值法令可判断D,从而可得答案.
【详解】
解: a<b,
故A不符合题意,C符合题意;
故B不符合题意;
当时,满足 而 故D不符合题意;
故选C
【点睛】
本题考查的是利用不等式的基本性质判断变形是否正确,掌握“不等式的基本性质与特值法的运用”是解本题的关键.
4、B
【解析】
略
5、D
【解析】
【分析】
先两边除以,然后根据X的范围分类讨论即可
【详解】
解:把不等式两边同时除以,
得:,
∵当X>0时,Y>X;
当X<0时,Y<X;
∴无法判断X、Y的大小关系,
故选D.
【点睛】
本题考查了不等式的性质的应用,解题的关键是熟练掌握不等式的性质.
6、A
【解析】
【分析】
根据不等式的性质1不等式不等式两边同时加或减去同一个数或整式,不等号方向不变,基本性质2:不等式两边同时乘以(或除以)同一个大于0的整数,不等号方向不变•基本性质3:不等式两边同时乘以(或除以)同一个小于0的整数,不等号方向改变,根据不等式性质对各选项进行一一分析判断即可.
【详解】
解:.,不妨设,
则,
选项符合题意;
B.,
,
选项B不符合题意;
C.,
,
,
选项C不符合题意;
D.,
,
,
选项D不符合题意;
故选:A.
【点睛】
本题考查不等式性质,掌握不等式性质是解题关键.
7、D
【解析】
【分析】
首先通过移项得到,然后利用不等式性质进一步化简即可得出答案.
【详解】
解:移项可得:,
两边同时除以-2可得:,
∴原不等式的解集为:,
故选:D.
【点睛】
本题主要考查了解一元一次不等式,熟练掌握相关方法是解题关键.
8、A
【解析】
【分析】
根据不等式解的定义列出不等式,求出解集即可确定出a的范围.
【详解】
解:∵x=1是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=4不是这个不等式的解,
∴ 且 ,
即﹣4(﹣2a+2)≤0且﹣(a+2)>0,
解得:a<﹣2.
故选:A.
【点睛】
此题考查了不等式的解集,熟练掌握一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集是解题的关键.
9、B
【解析】
【分析】
把a看作已知数表示出不等式组的解集,根据已知解集确定出a的范围,将a的整数解代入方程,检验方程解为负分数确定出所有a的值,即可求出积.
【详解】
解:解不等式,得:,
解不等式,得:,
不等式组的解集为,
,
解得,
解方程得,,
∵方程有负分数解,
∴,
∴,
∴的取值为,
∴整数的值为-3,-2,-1,0,1,2,3,
把代入方程得:,即,符合题意;
把代入方程得:,即,不符合题意;
把代入方程得:,即,符合题意;
把代入方程得:,即,不符合题意;
把代入方程得:,即,符合题意;
把代入方程得:,即,不符合题意;
把代入方程得:,即,符合题意.
符合条件的整数取值为,,1,3,
故选:B.
【点睛】
此题考查了解一元一次不等式组,以及解一元一次方程,熟练掌握解不等式组和方程的基本技能是解本题的关键.
10、D
【解析】
【分析】
根据三角形三边关系分析即可,三角形三边关系,两边之和大于第三边,三角形的两边差小于第三边.
【详解】
解:设第三边长为x,由题意得:
∵三角形的两边分别为7,10,
∴10−7<x<10+7,
解得:3<x<17,
符合条件的只有D.
故选:D.
【点睛】
本题考查了解一元一次不等式组,三角形的三边关系,掌握三角形的三边关系是解题的关键.
二、填空题
1、3
【解析】
【分析】
根据不等求得的取值范围,从而可以得到、的值,进而求得的值.
【详解】
解:,
移项,得,
合并同类项,得,,
不等式的最小整数解是,
,
,
移项,得,
合并同类项,得,
系数化为1,得,,
不等式的最大负整数解是,
,
,
故答案为:3.
【点睛】
本题考查一元一次不等式的整数解,解题的关键是明确解一元一次不等式的方法.
2、17
【解析】
【分析】
设小丽至少答对道题,则得分为分,失分为分,再列不等式即可.
【详解】
解:设小丽至少答对道题,则
解得:
为正整数,
所以的最小值为17,
答:小丽至少答对道题.
故答案为:17
【点睛】
本题考查的是一元一次不等式的应用,理解题意列出不等式是解本题的关键.
3、11或12##12或11
【解析】
【分析】
根据每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,得出5x+7≥6(x-1)+1,且6(x-1)+3>5x+7,分别求出即可.
【详解】
解:假设共有学生x人,根据题意得出:
,
解得:10<x≤12.
因为x是正整数,所以符合条件的x的值是11或12,
故答案为:11或12.
【点睛】
此题主要考查了一元一次不等式组的应用,根据题意找出不等关系得出不等式组是解决问题的关键.
4、a+2b>1
【解析】
【分析】
与的2倍即为,再用不等号连接即得答案.
【详解】
解:由题意得:“与的2倍的和大于1”用不等式表示为.
故答案为:.
【点睛】
本题考查了根据不等关系列出不等式,属于应知应会题型,正确理解题意是关键.
5、 11, 2或3或4.
【解析】
【分析】
根据题意将代入求解即可;根据题意列出一元一次不等式组即可求解.
【详解】
解:当时,第1次运算结果为,第2次运算结果为,
当时,输出结果,
若运算进行了2次才停止,则有,
解得:.
可以取的所有值是2或3或4,
故答案为:11,2或3或4.
【点睛】
此题考查了程序框图计算,代数式求值以及解一元一次不等式组,解题的关键是根据题意列出一元一次不等式组.
三、解答题
1、
【解析】
【分析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项可得.
【详解】
两边都乘以12,得:,
去括号,得:,
移项、合并同类项,得:,
系数化为1得,.
【点睛】
本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
2、 (1)见解析
(2)见解析
(3)见解析
(4)见解析
【解析】
【分析】
(1)根据等式两边加上(或减去)同一个数,不等号方向不变求解;
(2)根据不等式两边乘以(或除以)同一个负数,不等号方向改变求解;
(3)根据不等式两边乘以(或除以)同一个负数,不等号方向改变求解;
(4)根据等式两边加上(或减去)同一个含有字母的式子,不等号方向不变求解.
(1)
解:由x-1>2,得x>3,不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;
(2)
解:由-2x>-4,得x<2,不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;
(3)
解:由-x<-1,得x>2,不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;
(4)
解:由3x<x,得2x<0,不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.
【点睛】
本题主要考查了不等式的性质,正确掌握不等式的性质是解题关键.
3、,数轴表示见解析
【解析】
【分析】
按照解一元一次不等式组的方法和步骤解不等式组,再在数轴上表示解集即可.
【详解】
,
由①得;
由②得;
数轴表示为:
所以,原不等式组的解集是.
【点睛】
本题考查了一元一次不等式组的解法,解题关键是掌握一元一次不等式组的解法和步骤,会在数轴上表示解集.
4、(1)x≥1;(2)x>1
【解析】
【分析】
(1)先去括号,然后移项、合并同类项、系数化1,即可求解;
(2)先去分母,然后移项、合并同类项、系数化1,即可求解.
【详解】
(1)5x+3≥2(x+3),
去括号得:5x+3≥2x+6,
移项得:5x-2x≥6-3,
合并同类项得:3x≥3,
解得:x≥1.
(2),
去分母,得4x-2>3x-1,
移项,得:4x-3x>2-1,
合并同类项,得:x>1.
【点睛】
本题考查解一元一次不等式,解题的关键是熟知解一元一次不等式的步骤:去分母、去括号、移项、合并同类项、系数化1.
5、 (1)六(1)班的捐款额为420元,六(2)班的捐款额为480元
(2)38人
【解析】
【分析】
(1)设六(1)班的捐款额为元,从而可得六(2)班的捐款额为元,再根据合计总捐款额为900元建立方程,解方程即可得;
(2)先求出六(1)班学生数最多不超过42人,再根据合计的学生总人数即可得出答案.
(1)
解:设六(1)班的捐款额为元,则六(2)班的捐款额为元,
由题意得:,
解得,
则,
答:六(1)班的捐款额为420元,六(2)班的捐款额为480元;
(2)
解:因为六(1)班学生平均每人捐款的金额不小于10元,
所以六(1)班学生数最多不超过(人),
所以六(2)班学生数至少是(人),
答:六(2)班的学生数至少是38人.
【点睛】
本题考查了一元一次方程的应用、不等式的应用,正确建立方程和理解不等式的概念是解题关键.
初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试复习练习题: 这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试复习练习题,共18页。试卷主要包含了下列各式,关于x的方程3﹣2x=3,对有理数a,b定义运算等内容,欢迎下载使用。
初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试练习题: 这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试练习题,共17页。试卷主要包含了如果,不等式的最小整数解是,关于x的方程3﹣2x=3,下列说法正确的是,现有甲等内容,欢迎下载使用。
数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课后复习题: 这是一份数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课后复习题,共18页。试卷主要包含了已知三角形两边长分别为7,若,则下列各式中正确的是等内容,欢迎下载使用。