初中冀教版第十章 一元一次不等式和一元一次不等式组综合与测试同步达标检测题
展开
这是一份初中冀教版第十章 一元一次不等式和一元一次不等式组综合与测试同步达标检测题,共18页。试卷主要包含了若成立,则下列不等式成立的是,不等式组的解集在数轴上应表示为等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知x=1是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=4不是这个不等式的解,则a的取值范围是( )A.a<﹣2 B.a≤1 C.﹣2<a≤1 D.﹣2≤a≤12、下列不是不等式5x-3<6的一个解的是( )A.1 B.2 C.-1 D.-23、如果有理数a<b,那么下列各式中,不一定成立的是( )A.4-a>4-b B.2a<2b C.a2<ab D.a-3<b-1.4、﹣(﹣a)和﹣b在数轴上表示的点如图所示,则下列判断正确的是( )A.﹣a<1 B.b﹣a>0 C.a+1>0 D.﹣a﹣b<05、若成立,则下列不等式成立的是( )A. B.C. D.6、不等式组的解集在数轴上应表示为( )A. B.C. D.7、已知,则下列各式中,不一定成立的是( )A. B. C. D.8、已知三条线段的长分别是4,4,m,若它们能构成三角形,则整数m的最大值是( )A.10 B.8 C.7 D.49、若a>b>0,c>d>0,则下列式子不一定成立的是( )A.a﹣c>b﹣d B. C.ac>bc D.ac>bd10、把不等式组的解集表示在数轴上,正确的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式的解集是__.2、不等式4x﹣3≤2x+1的非负整数解的和是 _____.3、下列数值-2,-1.5,-1,0,1,1.5,2中能使1-2x>0成立的个数有____个.4、不等式组的解集为_______.5、不等式组的解集是_______.三、解答题(5小题,每小题10分,共计50分)1、南山荔枝,广东省深圳市南山区特产,中国国家地理标志产品,品种多样.共有6个品种,“糯米糍”和“妃子笑”是其中两个品种.某水果商从批发市场用8000元购进了“糯米糍”和“妃子笑”各200千克,“糯米糍”的进价比“妃子笑”的进价每千克多20元.“糯米糍”售价为每千克40元,“妃子笑”售价为每千克16元.(1)“糯米糍”和“妃子笑”的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了“糯米糍”和“妃子笑”各200千克,进价不变,但在运输过程中“妃子笑”损耗了20%.若“妃子笑”的售价不变,要想让第二次赚的钱不少于第一次所赚的钱,“糯米糍”的售价最少应为多少?2、某乒乓球馆将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价200元,乒乓球每盒定价40元.经洽谈后,甲商店每买一副球拍赠一盒乒乓球;乙商店全部按定价的9折优惠.该球馆需买球拍5副,乒乓球若干盒(大于5盒).(1)如果购买5副球拍和6盒乒乓球,则在甲商店购买需花费 元,在乙商店购买需花费 元;(2)当购买乒乓球多少盒时,在两家商店花费金额一样;(3)当购买乒乓球多少盒时,在乙商店购买划算.3、解不等式组:,并写出该不等式组的整数解.4、在“爱心传递”活动中,某校学生积极捐款. 其中六年级的两个班级的捐款情况如下表:班 级人数捐款总额(元)人均捐款额(元)(1)班 (2)班 合计8090011.25小杰在统计时不小心污损了其中的部分数据,但他还记得以下信息:信息一:六(2)班的捐款额比六(1)班多60元;信息二:六(1)班学生平均每人捐款的金额不小于10元;请根据表格中留下的数据和以上信息,帮助小杰同学解决下列问题:(1)六(1)班和六(2)班的捐款总额各是多少元?(2)六(2)班的学生数至少是多少人?5、(1)解不等式组,并把解集在数轴上表示出来.(2)计算:1024×243÷25. -参考答案-一、单选题1、A【解析】【分析】根据不等式解的定义列出不等式,求出解集即可确定出a的范围.【详解】解:∵x=1是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=4不是这个不等式的解,∴ 且 ,即﹣4(﹣2a+2)≤0且﹣(a+2)>0,解得:a<﹣2.故选:A.【点睛】此题考查了不等式的解集,熟练掌握一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集是解题的关键.2、B【解析】略3、C【解析】【分析】根据a>b,应用不等式的基本性质,逐项判断即可.【详解】解:∵a<b,∴-a>-b,∴4-a>4-b,∴选项A不符合题意;∵a<b,∴2a<2b,∴选项B不符合题意;∵a<b,∴a2<ab(),或a2=ab(a=0), ∴选项C符合题意;∵a<b,∴a-3<b-1,∴选项D不符合题意.故选:C.【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.4、B【解析】【分析】化简﹣(﹣a)=a,根据数轴得到a<﹣1<﹣b<0,再结合有理数的加减、不等式的性质逐项分析可得答案.【详解】解:﹣(﹣a)=a,由数轴可得a<﹣1<﹣b<0,∵a<﹣1,∴﹣a>1,故A选项判断错误,不合题意;∵﹣b<0,∴b>0,b﹣a>0,故B正确,符合题意;∵a<﹣1,∴a+1<0,故C判断错误,不合题意;∵a<﹣b,∴a+b<0,∴﹣a﹣b>0,故D判断错误,不合题意.故选:B.【点睛】本题考查了有理数的加减法则、不等式的性质、用数轴表示数等知识,熟知相关知识并根据题意灵活应用是解题关键.5、C【解析】【分析】根据不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变解答.【详解】解:A、不等式a>b两边都乘-1,不等号的方向没有改变,不符合题意;B、不等式a>b两边都乘-1,不等号的方向没有改变,不符合题意;C、不等式a>b两边都乘2,不等号的方向不变,都减1,不等号的方向不变,符合题意;D、因为≥0,当=0时,不等式a>b两边都乘,不等式不成立,不符合题意;故选:C.【点睛】本题考查了不等式的基本性质.不等式两边同时乘以或除以同一个数或式子时,一定要注意不等号的方向是否改变.6、B【解析】【分析】在数轴上把不等式组的解集表示出来,即可选项答案.【详解】解:不等式组的解集在数轴上应表示为:故选:B.【点睛】本题考查了在数轴上表示不等式组的解集等知识点,注意:在数轴上表示不等式组的解集时,包括该点时用实心点,不包括该点时用空心点.7、C【解析】【分析】根据不等式的性质进行解答.【详解】解:A、在不等式的两边同时乘以3,不等式仍成立,即,故本选项不符合题意.B、在不等式的两边同时乘以,不等号方向改变,即,故本选项不符合题意.C、,则不一定成立,如当,时,,故本选项符合题意.D、在不等式的两边同时减去1,不等式仍成立,即,所以,故本选项不符合题意.故选:C.【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.8、C【解析】【分析】根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值.【详解】解:条线段的长分别是4,4,m,若它们能构成三角形,则,即又为整数,则整数m的最大值是7故选C【点睛】本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键.9、A【解析】【分析】根据不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行分析即可.【详解】解:.当,,,时,,故本选项符合题意;.若,,则,故本选项不合题意;.若,,则,故本选项不合题意;.若,,则,故本选项不合题意;故选:A.【点睛】本题主要考查了不等式的性质,解题的关键是注意不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.10、D【解析】略二、填空题1、##【解析】【分析】移项合并化系数为1即可.【详解】.移项合并同类项,得:.化系数为.故答案为:.【点睛】本题考查一次不等式的解法,掌握一般步骤是关键,属于基础题.2、3【解析】【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1得出不等式的解集,从而得出答案.【详解】解:4x﹣3≤2x+1移项,得:4x﹣2x≤1+3,合并同类项,得:2x≤4,系数化为1,得:x≤2,∴不等式的非负整数解为0、1、2,∴不等式的非负整数解的和为0+1+2=3,故答案为:3.【点睛】本题主要考查了一元一次不等式的整数解,解题的关键在于能够熟练掌握解一元一次不等式的方法.3、4【解析】【分析】解不等式,再根据不等式的解集确定使不等式成立的数有几个即可.【详解】解:1-2x>0,解得:x<.满足x<的有-2,-1.5,-1,0共4个,故答案为:4.【点睛】本题考查了解一元一次不等式,解题关键是熟练掌握解不等式的方法.4、【解析】【分析】先分别求出每一个不等式的解集,然后再根据“同大取大、同小取小、大小小大中间找、大大小小找不到”确定不等式组的解集即可.【详解】解:由,得:,由,得:,∴不等式组的解集为.故填:.【点睛】本题主要考查了解一元一次不等式组,掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的关键.5、x<﹣3【解析】【分析】根据求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)进行解答.【详解】解:根据“同小取小”,不等式组的解集是x<﹣3.故答案为:x<﹣3.【点睛】本题考查了一元一次不等式组的解集.解题的关键是掌握一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).三、解答题1、 (1)“糯米糍”的进价是30元/千克,“妃子笑”的进价是10元/千克,销售完后,该水果商共赚了3200元钱.(2)43.2元/千克【解析】【分析】(1)设“糯米糍”的进价是x元/千克,则“妃子笑”的进价是(x﹣20)元/千克,根据某水果商从批发市场用8000元购进了“糯米糍”和“妃子笑”各200千克,即可得出关于x的一元一次方程,解之即可得出x的值,将其代入(x﹣20)中可求出“妃子笑”的进价,再利用总利润=销售单价×销售数量﹣进货总价,即可求出全部售出后获得的利润;(2)设“糯米糍”的售价应为m元/千克,根据总利润=销售单价×销售数量﹣进货总价,结合第二次赚的钱不少于第一次所赚的钱,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.(1)解:设“糯米糍”的进价是x元/千克,则“妃子笑”的进价是(x﹣20)元/千克,依题意得:200x+200(x﹣20)=8000,解得:x=30,∴x﹣20=10.200×40+200×16﹣8000=3200(元).答:“糯米糍”的进价是30元/千克,“妃子笑”的进价是10元/千克,销售完后,该水果商共赚了3200元钱.(2)设“糯米糍”的售价应为m元/千克,依题意得:200m+200×(1﹣20%)×16﹣8000≥3200,解得:m≥43.2,答:“糯米糍”的售价最少应为43.2元/千克.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.2、 (1)1040,1116(2)当购买乒乓球25盒时,在两家商店花费金额一样(3)当购买乒乓球大于25盒时,在乙商店购买划算【解析】【分析】(1)甲:根据买一副球拍赠一盒乒乓球可知只要付5副球拍和1盒球的金额;乙:先算所有的,再计算9折后的金额;(2)设有x盒乒乓球,然后将两个商店的需要的金额计算出来,再列出方程计算得到x的值;(3)令乙商店的金额小于甲商店的金额列出不等式,然后解不等式.【详解】解:(1)甲:∵买一副球拍赠一盒乒乓球,∴只需付5副球拍和1盒球的金额,∴需花费200×5+40×1=1040(元),乙:0.9×(200×5+40×6)=1116(元).故答案为:1040,1116.(2)设有x盒乒乓球,由题意得,甲:200×5+40(x﹣5)=800+40x(元),乙:0.9(200×5+40x)=900+36x(元),∵在两家商店花费金额一样,∴800+40x=900+36x,解得:x=25,答:当购买乒乓球25盒时,在两家商店花费金额一样.(3)由(2)得,甲店需要(800+40x)元,乙店需要(900+36x)元,∵在乙商店购买划算,∴800+40x>900+36x,解得:x>25,答:当购买乒乓球大于25盒时,在乙商店购买划算.【点睛】本题考查了一元一次方程和一元一次不等式的应用,解题的关键是正确理解题意用含有x的式子表示甲乙两个商店所需金额.3、−4<x≤15【解析】【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】解:由①得,x>−4,由②得,x≤15,故不等式组的解集为: −4<x≤15【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4、 (1)六(1)班的捐款额为420元,六(2)班的捐款额为480元(2)38人【解析】【分析】(1)设六(1)班的捐款额为元,从而可得六(2)班的捐款额为元,再根据合计总捐款额为900元建立方程,解方程即可得;(2)先求出六(1)班学生数最多不超过42人,再根据合计的学生总人数即可得出答案.(1)解:设六(1)班的捐款额为元,则六(2)班的捐款额为元,由题意得:,解得,则,答:六(1)班的捐款额为420元,六(2)班的捐款额为480元;(2)解:因为六(1)班学生平均每人捐款的金额不小于10元,所以六(1)班学生数最多不超过(人),所以六(2)班学生数至少是(人),答:六(2)班的学生数至少是38人.【点睛】本题考查了一元一次方程的应用、不等式的应用,正确建立方程和理解不等式的概念是解题关键.5、(1),数轴图见解析;(2)7776.【解析】【分析】(1)先分别求出两个不等式的解,再找出它们的公共部分即可得不等式组的解集,然后将其在数轴上表示出来即可得;(2)根据、同底数幂的除法法则、积的乘方的逆用即可得.【详解】解:(1),解不等式①得:,解不等式②得:,则不等式组的解集为,将解集在数轴上表示出来如下:(2)原式.【点睛】本题考查了解一元一次不等式组、同底数幂的除法法则、积的乘方的逆用,熟练掌握不等式组的解法和各运算法则是解题关键.
相关试卷
这是一份数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试同步达标检测题,共17页。试卷主要包含了不等式组的解集在数轴上应表示为,已知三角形两边长分别为7等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试练习题,共19页。试卷主要包含了如果,那么下列结论中正确的是,下列各式等内容,欢迎下载使用。
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试巩固练习,共18页。试卷主要包含了若,则下列式子一定成立的是,不等式的最小整数解是,如图,数轴上表示的解集是等内容,欢迎下载使用。