初中冀教版第十章 一元一次不等式和一元一次不等式组综合与测试同步训练题
展开
这是一份初中冀教版第十章 一元一次不等式和一元一次不等式组综合与测试同步训练题,共16页。试卷主要包含了某矿泉水每瓶售价1.5元,现甲,不等式﹣2x+4<0的解集是,下列不等式是一元一次不等式的是等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组有解,则符合条件的整数k的值之和为( )A.5 B.4 C.3 D.22、对有理数a,b定义运算:a✬b=ma +nb,其中m,n是常数,如果3✬4=2,5✬8>2,那么n的取值范围是( )A.n> B.n< C.n>2 D.n<23、,那么( )A. B. C. D.无法确定4、不等式组有两个整数解,则的取值范围为( )A. B. C. D.5、某矿泉水每瓶售价1.5元,现甲、乙两家商场 给出优 惠政策:甲商场全部9折,乙商场20瓶以上的部分8折.老师要小明去买一些矿泉水,小明想了想觉得到乙商场购买比较优惠.则小明需要购买的矿泉水的数量x的取值范围是( )A.x>20 B.x>40 C.x≥40 D.x<406、不等式﹣2x+4<0的解集是( )A.x> B.x>﹣2 C.x<2 D.x>27、若x<y成立,则下列不等式成立的是( )A.﹣x+2<﹣y+2 B.4x>4y C.﹣3x<﹣3y D.x﹣2<y﹣28、下列不等式是一元一次不等式的是( )A. B. C. D.9、若,,则下列不等式不一定成立的是( )A. B. C. D.10、如果、都是实数,且,那么下列结论中,正确的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、按照下面给定的计算程序,当时,输出的结果是_____;使代数式的值小于20的最大整数x是__________.2、3x与2y的差是非正数,用不等式表示为_________.3、不等式的解集是_______.4、求不等式组的解集的过程,叫做__________.5、不等式组的解集为____________.三、解答题(5小题,每小题10分,共计50分)1、关于x的方程的解大于1,求a的取值范围.2、(1)解不等式:5x+3≥2(x+3).(2)解不等式2x-1>.3、(1)解不等式组,并将其解集在数轴上表示出来.(2)解不等式组,并写出该不等式的整数解.4、南山荔枝,广东省深圳市南山区特产,中国国家地理标志产品,品种多样.共有6个品种,“糯米糍”和“妃子笑”是其中两个品种.某水果商从批发市场用8000元购进了“糯米糍”和“妃子笑”各200千克,“糯米糍”的进价比“妃子笑”的进价每千克多20元.“糯米糍”售价为每千克40元,“妃子笑”售价为每千克16元.(1)“糯米糍”和“妃子笑”的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了“糯米糍”和“妃子笑”各200千克,进价不变,但在运输过程中“妃子笑”损耗了20%.若“妃子笑”的售价不变,要想让第二次赚的钱不少于第一次所赚的钱,“糯米糍”的售价最少应为多少?5、解不等式组. -参考答案-一、单选题1、A【解析】【分析】先求出方程的解与不等式组的解集,再根据题意相确定的取值范围即可.【详解】解:解方程3﹣2x=3(k﹣2),得:,由题意得,解得:,解不等式,得:, 解不等式,得:,不等式组有解,,则,符合条件的整数的值的和为,故选A.【点睛】本题主要考查了一元一次方程的解、一元一次不等式组的整数解等知识点,明确题意、正确求解不等式成为解答本题的关键.2、A【解析】【分析】先根据新运算的定义和3✬4=2将用表示出来,再代入5✬8>2可得一个关于的一元一次不等式,解不等式即可得.【详解】解:由题意得:,解得,由5✬8>2得:,将代入得:,解得,故选:A.【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键.3、D【解析】【分析】先两边除以,然后根据X的范围分类讨论即可【详解】解:把不等式两边同时除以,得:,∵当X>0时,Y>X;当X<0时,Y<X;∴无法判断X、Y的大小关系,故选D.【点睛】本题考查了不等式的性质的应用,解题的关键是熟练掌握不等式的性质.4、C【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于的不等式组,求出即可.【详解】解:,解不等式①得:,解不等式②得:,不等式组的解集为,不等式组有两个整数解,,故选:C.【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出关于的不等式组,难度适中.5、B【解析】略6、D【解析】【分析】首先通过移项得到,然后利用不等式性质进一步化简即可得出答案.【详解】解:移项可得:,两边同时除以-2可得:,∴原不等式的解集为:,故选:D.【点睛】本题主要考查了解一元一次不等式,熟练掌握相关方法是解题关键.7、D【解析】【分析】不等式的性质1:在不等式的两边都加上或减去同一个数,不等号的方向不变,性质2:在不等式的两边都乘以或除以同一个正数,不等号的方向不变,性质3:在不等式的两边都乘以或除以同一个负数,不等号的方向改变;根据不等式的基本性质逐一判断即可.【详解】解:A、不等式x<y的两边都乘﹣1,不等号的方向改变,即﹣x>﹣y,不等式﹣x>﹣y的两边都加上2,不等号的方向不变,即﹣x+2>﹣y+2,原变形错误,故此选项不符合题意;B、不等式x<y的两边都乘4,不等号的方向不变,即4x<4y,原变形错误,故此选项不符合题意;C、不等式x<y的两边都乘﹣3,不等号的方向改变,即﹣3x>﹣3y,原变形错误,故此选项不符合题意;D、不等式x<y的两边都减去2,不等号的方向不变,即x﹣2<y﹣2,原变形正确,故此选项符合题意;故选:D.【点睛】本题考查的是不等式的基本性质,掌握“不等式的基本性质”是解本题的关键.8、B【解析】【分析】根据含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式进行分析即可.【详解】解:A、未知数的次数含有2次,不是一元一次不等式,故此选项不合题意;B、是一元一次不等式,故此选项符合题意;C、是分式,故该不等式不是一元一次不等式,故此选项不合题意;D、含有两个未知数,不是一元一次不等式,故此选项不合题意;故选:B.【点睛】此题主要考查了一元一次不等式定义,关键是掌握一元一次不等式的定义.9、D【解析】【分析】根据不等式的性质,逐项判断即可求解.【详解】解:A、若,,则,故本选项正确,不符合题意;B、若,,则,故本选项正确,不符合题意;C、若,则 ,若,则,故本选项正确,不符合题意;D、若,,当 时,,故本选项错误,符合题意;故选:D【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.10、B【解析】【分析】根据题意和不等式的性质,赋予特殊值,可以判断各个选项中的结论是否成立,从而可以解答本题.【详解】解:、都是实数,且,当为负数时,,故选项A错误;,则,故选项B正确;当,时,,故选项C错误;,时,,故选项D错误;故选:B.【点睛】本题考查不等式,解答本题的关键是明确题意,利用不等式的性质解答.二、填空题1、 1 7【解析】【分析】当时,代数式的值,根据1<20,可确定输出的值为1,列不等式,求解即可得答案.【详解】解:当时,,∵,∴当时,输出的值为1,,移项合并得,系数化1得,∴x最大整数=7.故1;7.【点睛】本题考查流程图与代数式求值,列不等式,不等式的最大整数解,掌握代数式求值,列不等式是解题关键.2、3x-2y≤0【解析】【分析】根据题意直接利用非正数的定义进而分析即可得出不等式.【详解】解:3x与2y的差是非正数,用不等式表示为3x-2y≤0.故答案为:3x-2y≤0.【点睛】本题主要考查由实际问题抽象出一元一次不等式,正确理解相关定义是解题的关键.3、【解析】【分析】根据去括号、移项、合并同类项、系数化为1即可求出不等式的解集.【详解】解:去括号得,移项得,合并得,系数化为1,得: 故答案为:【点睛】此题考查了解一元一次不等式,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解集.4、解不等式组【解析】略5、【解析】【分析】分别解不等式,由此得到不等式组的解集.【详解】解:解不等式,得x;解不等式,得x<4,∴不等式组的解集为,故答案为.【点睛】此题考查了求不等式组的解集,正确掌握解一元一次不等式的步骤及法则是解题的关键.三、解答题1、a>0【解析】【分析】先解方程得出x=,根据方程的解大于1得出关于a的不等式,解之即可.【详解】解:解不等式6x+a−4=2x+2a,得x=,根据题意,得:>1,解得a>0.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.2、(1)x≥1;(2)x>1【解析】【分析】(1)先去括号,然后移项、合并同类项、系数化1,即可求解;(2)先去分母,然后移项、合并同类项、系数化1,即可求解.【详解】(1)5x+3≥2(x+3),去括号得:5x+3≥2x+6,移项得:5x-2x≥6-3,合并同类项得:3x≥3,解得:x≥1.(2),去分母,得4x-2>3x-1,移项,得:4x-3x>2-1,合并同类项,得:x>1.【点睛】本题考查解一元一次不等式,解题的关键是熟知解一元一次不等式的步骤:去分母、去括号、移项、合并同类项、系数化1.3、(1),不等式组的解集表示在数轴上见解析;(2)不等式组的整数解是3.【解析】【分析】(1)先求出各个不等式的解集,然后根据“同大取大,同小取小,小大大小中间找,大大小小无处找”确定不等式组的解集,在数轴上表示出来即可;(2)先求出各个不等式的解集,然后根据“同大取大,同小取小,小大大小中间找,大大小小无处找”确定不等式组的解集,找出整数解即可.【详解】(1),解不等式①得:,解不等式②得:,则不等式组的解集为:,将不等式组的解集表示在数轴上如下:(2)解:,解不等式①得:,解不等式②得:,∴不等式组的解集是:,∴不等式组的整数解是3.【点睛】题目主要考查求解不等式组及在数轴上表示,熟练掌握不等式组的解法是解题关键.4、 (1)“糯米糍”的进价是30元/千克,“妃子笑”的进价是10元/千克,销售完后,该水果商共赚了3200元钱.(2)43.2元/千克【解析】【分析】(1)设“糯米糍”的进价是x元/千克,则“妃子笑”的进价是(x﹣20)元/千克,根据某水果商从批发市场用8000元购进了“糯米糍”和“妃子笑”各200千克,即可得出关于x的一元一次方程,解之即可得出x的值,将其代入(x﹣20)中可求出“妃子笑”的进价,再利用总利润=销售单价×销售数量﹣进货总价,即可求出全部售出后获得的利润;(2)设“糯米糍”的售价应为m元/千克,根据总利润=销售单价×销售数量﹣进货总价,结合第二次赚的钱不少于第一次所赚的钱,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.(1)解:设“糯米糍”的进价是x元/千克,则“妃子笑”的进价是(x﹣20)元/千克,依题意得:200x+200(x﹣20)=8000,解得:x=30,∴x﹣20=10.200×40+200×16﹣8000=3200(元).答:“糯米糍”的进价是30元/千克,“妃子笑”的进价是10元/千克,销售完后,该水果商共赚了3200元钱.(2)设“糯米糍”的售价应为m元/千克,依题意得:200m+200×(1﹣20%)×16﹣8000≥3200,解得:m≥43.2,答:“糯米糍”的售价最少应为43.2元/千克.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.5、【解析】【分析】分别对两个一元一次不等式进行求解,将两个不等式的解中公共的部分表示出来即可.【详解】解:∵∴,;∵∴,;∴原不等式组的解为:.【点睛】本题考查了解一元一次不等式组.解题的关键在于正确求解出两个不等式的解.
相关试卷
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试当堂检测题,共18页。试卷主要包含了如图,数轴上表示的解集是,对有理数a,b定义运算,若,则下列式子一定成立的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试复习练习题,共16页。
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课后作业题,共15页。试卷主要包含了下列各式等内容,欢迎下载使用。