初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步达标检测题
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在平面直角坐标系xOy中,若在第三象限,则关于x轴对称的图形所在的位置是( )
A.第一象限B.第二象限C.第三象限D.第四象限
2、如图,在平面直角坐标系中.△MNP绕原点逆时针旋转90°得到△M1N1P1,若M(1,﹣2).则点M1的坐标为( )
A.(﹣2,﹣1)B.(1,2)C.(2,1)D.(﹣1,﹣2)
3、第24届冬季奥林匹克运动会将于2022年2月4日~20日在北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )
A.离北京市100千米B.在河北省
C.在怀来县北方D.东经114.8°,北纬40.8°
4、在平面直角坐标系中,点A的坐标为.作点A关于x轴的对称点,得到点,再将点向左平移2个单位长度,得到点,则点所在的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
5、如图,在平面直角坐标系中,可以看作是经过若干次图形的变化(平移、轴对称)得到的,下列由得到的变化过程错误的是( )
A.将沿轴翻折得到
B.将沿直线翻折,再向下平移个单位得到
C.将向下平移个单位,再沿直线翻折得到
D.将向下平移个单位,再沿直线翻折得到
6、在下列说法中,能确定位置的是( )
A.禅城区季华五路B.中山公园与火车站之间
C.距离祖庙300米D.金马影剧院大厅5排21号
7、平面直角坐标系中,下列在第二象限的点是( )
A.B.C.D.
8、在平面直角坐标系中,下列各点与点(2,3)关于x轴对称的是( )
A.(2,﹣3)B.(3,2)C.(﹣2,﹣3)D.(﹣2,3)
9、在平面直角坐标系中,点P(-3,-3)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
10、如图所示,在平面直角坐标系xOy中,△ABC关于直线y=1对称,已知点A的坐标是(3,4),则点B的坐标是( )
A.(3,﹣4)B.(﹣3,2)C.(3,﹣2)D.(﹣2,4)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在平面直角坐标系中,点在第______象限
2、在平面直角坐标系中,一个长方形ABCD三个顶点的坐标分别为A(1,2),B(1,﹣4),D(﹣3,2),则点C坐标为 _____.
3、点 A(4,-3)关于 y 轴的对称点的坐标是______,关于原点对称的点的坐标是_________,到原点的距离是____.
4、在平面直角坐标系xOy中,横、纵坐标都是整数的点叫做整点.如图,点的坐标为(,4),点的坐标为(,1),点为第一象限内的整点,不共线的,,三点构成轴对称图形,则点的坐标可以是______(写出一个即可),满足题意的点的个数为________.
5、在平面直角坐标系xOy中,已知三角形的三个顶点的坐标分别是A(0,1),B(1,0),C(1,2),点P在y轴上,设三角形ABP和三角形ABC的面积分别为S1和S2,如果S1⩾S2,那么点P的纵坐标yp的取值范围是 ________.
三、解答题(5小题,每小题10分,共计50分)
1、对于平面直角坐标系中的线段,给出如下定义:线段上所有的点到轴的距离的最大值叫线段的界值,记作.如图,线段上所有的点到轴的最大距离是3,则线段的界值.
(1)若A(-1,-2),B(2,0),线段的界值__________,线段关于直线对称后得到线段,线段的界值为__________;
(2)若E(-1,m),F(2,m+2),线段关于直线对称后得到线段;
①当时,用含的式子表示;
②当时,的值为__________;
③当时,直接写出的取值范围.
2、在的正方形网格中,小正方形的边长均为1个单位长度.
(1)画出绕点O逆时针旋转90°的;
(2)再画出关于点O的中心对称图形.
3、对于面积为S的三角形和直线l,将该三角形沿直线l折叠,重合部分的图形面积记为,定义为该三角形关于直线l的对称度.如图,将面积为S的ABC沿直线l折叠,重合部分的图形为,将的面积记为,则称为ABC关于直线l的对称度.
在平面直角坐标系xOy中,点A(0,3),B(-3,0),C(3,0).
(1)过点M(m,0)作垂直于x轴的直线,
①当时,ABC关于直线的对称度的值是 :
②若ABC关于直线的对称度为1,则m的值是 .
(2)过点N(0,n)作垂直于y轴的直线,求△ABC关于直线的对称度的最大值.
(3)点P(-4,0)满足,点Q的坐标为(t,0),若存在直线,使得APQ关于该直线的对称度为1,写出所有满足题意的整数t的值.
4、如图,在平面直角坐标内,点A的坐标为(-4,0),点C与点A关于y轴对称.
(1)请在图中标出点A和点C;
(2)△ABC的面积是 ;
(3)在y轴上有一点D,且S△ACD=S△ABC,则点D的坐标为 .
5、△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.
(1)作出△ABC关于y轴对称的△A1B1C1,并写出点C1的坐标;
(2)作出△A1B1C1关于x轴对称的△A2B2C2.
(3)求△AA1A2的面积
-参考答案-
一、单选题
1、B
【解析】
【分析】
设内任一点A(a,b)在第三象限内,可得a<0,b<0,关于x轴对称后的点B(-a,b),则﹣a>0,b<0,然后判定象限即可.
【详解】
解:∵设内任一点A(a,b)在第三象限内,
∴a<0,b<0,
∵点A关于x轴对称后的点B(a,-b),
∴﹣b>0,
∴点B(a,-b)所在的象限是第二象限,即在第二象限.
故选:B.
【点睛】
本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.
2、C
【解析】
【分析】
连接OM,OM1,分别过M和M1作y轴的垂线,垂足为A,B,证明△OAM1≌△MBO,得到OA=BM=1,AM1=OB=2,从而可得M1坐标.
【详解】
解:如图,连接OM,OM1,分别过M和M1作y轴的垂线,垂足为A,B,
由旋转可知:∠MOM1=90°,OM=OM1,
则∠AOM1+∠BOM=90°,
又∠AOM1+∠AM1O=90°,
∴∠AM1O=∠BOM,
又∵∠OAM1=∠OBM=90°,OM=OM1,
∴△OAM1≌△MBO(AAS),
∴OA=BM=1,AM1=OB=2,
∴M1(2,1),
故选C.
【点睛】
本题考查了坐标与图形—旋转,全等三角形的判定和性质,解题的关键是利用旋转的性质得到全等三角形的条件.
3、D
【解析】
【分析】
若将地球看作一个大的坐标系,每个位置同样有对应的横纵坐标,即为经纬度.
【详解】
离北京市100千米、在河北省、在怀来县北方均表示的是位置的大概范围,
东经114.8°,北纬40.8°为准确的位置信息.
故选:D.
【点睛】
本题考查了实际问题中的坐标表示,理解经纬度和横纵坐标的本质是一样的是解题的关键.
4、C
【解析】
【分析】
根据题意结合轴对称的性质可求出点的坐标.再根据平移的性质可求出点的坐标,即可知其所在象限.
【详解】
∵点A的坐标为(1,3),点是点A关于x轴的对称点,
∴点的坐标为(1,-3).
∵点是将点向左平移2个单位长度得到的点,
∴点的坐标为(-1,-3),
∴点所在的象限是第三象限.
故选C.
【点睛】
本题考查轴对称的性质,平移中点的坐标的变化以及判断点所在的象限.根据题意求出点的坐标是解答本题的关键.
5、C
【解析】
【分析】
根据坐标系中平移、轴对称的作法,依次判断四个选项即可得.
【详解】
解:A、根据图象可得:将沿x轴翻折得到,作图正确;
B、作图过程如图所示,作图正确;
C、如下图所示为作图过程,作图错误;
D、如图所示为作图过程,作图正确;
故选:C.
【点睛】
题目主要考查坐标系中图形的平移和轴对称,熟练掌握平移和轴对称的作法是解题关键.
6、D
【解析】
【分析】
根据确定位置的方法逐一判处即可.
【详解】
解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;
B、中山公园与火车站之间,没能确定准确位置,故不符合题意;
C、距离祖庙300米,有距离但没有方向,故不符合题意;
D、金马影剧院大厅5排21号,确定了位置,故符合题意.
故选:D
【点睛】
本题考查了位置的确定,熟练掌握常见的确定位置的方法:①用有序数对确定物体位置;②用方向和距离来确定物体的位置.
7、C
【解析】
【分析】
由题意直接根据第二象限点的坐标特点,横坐标为负,纵坐标为正,进行分析即可得出答案.
【详解】
解:A、点(1,0)在x轴,故本选项不合题意;
B、点(3,-5)在第四象限,故本选项不合题意;
C、点(-1,8)在第二象限,故本选项符合题意;
D、点(-2,-1)在第三象限,故本选项不合题意;
故选:C.
【点睛】
本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
8、A
【解析】
【分析】
关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数,据此直接作答即可.
【详解】
解:点(2,3)关于x轴对称的是
故选A
【点睛】
本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数”是解本题的关键.
9、C
【解析】
【分析】
根据平面直角坐标系中各象限内点的坐标特征解答即可.
【详解】
解:因为A(−3,-3)中的横坐标为负,纵坐标为负,
故点P在第三象限.
故选C.
【点睛】
本题主要考查点所在的象限问题,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).
10、C
【解析】
【分析】
根据轴对称的性质解决问题即可.
【详解】
解:∵△ABC关于直线y=1对称,
∴点A和点B是关于直线y=1对称的对应点,它们到y=1的距离相等是3个单位长度,
∵点A的坐标是(3,4),
∴B(3,﹣2),
故选:C.
【点睛】
本题主要考查了坐标的对称特点.解此类问题的关键是要掌握轴对称的性质:对称轴垂直平分对应点的连线.利用此性质可在坐标系中得到对应点的坐标.
二、填空题
1、三
【解析】
【分析】
根据的横纵坐标都为负,即可判断在第三象限
【详解】
解:点在第三象限
故答案为:三
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).
2、(﹣3,﹣4)
【解析】
【分析】
根据长方形的性质求出点C的横坐标与纵坐标,即可得解.
【详解】
如图,
∵A(1,2),B(1,﹣4),D(﹣3,2),
∴点C的横坐标与点D的横坐标相同,为﹣3,
点C的纵坐标与点B的纵坐标相同,为﹣4,
∴点D的坐标为(﹣3,﹣4).
故答案为:(﹣3,﹣4).
【点睛】
本题考查了坐标与图形性质,主要利用了矩形的对边平行且相等的性质,作出图形更形象直观.
3、 (-4,-3) (-4,3) 5
【解析】
【分析】
关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数;由勾股定理求得两点间的距离.
【详解】
解:点A(4,-3)关于y轴的对称点的坐标是(-4,-3),关于原点对称的点的坐标是(-4,3),到原点的距离是:.
故答案是:(-4,-3);(-4,3);5.
【点睛】
此题主要考查了关于原点对称点的性质,关于坐标轴对称的点的性质,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
4、 (,)(答案不唯一) 7
【解析】
【分析】
根据题意建立平面直角坐标系,进而根据题意找等腰三角形即可
【详解】
建立如下坐标系,如图,则点
如图,根据题意不共线的,,三点构成轴对称图形,则是等腰三角形,根据等腰三角形的性质可得这样的点有7个,分别为:
故答案为:(3,1);7
【点睛】
本题考查了等腰三角形的判定,轴对称的性质,将题目转化为找等腰三角形是解题的关键.
5、或
【解析】
【分析】
借助坐标系内三角形底和高的确定,利用三角形面积公式求解.
【详解】
解:如图,
S1=×|yP−yA|×1,
S2=×2×1=1,
∵S1≥S2,
∴|yP-1|≥3,
解得:yP≤-2或yP≥4.
【点睛】
本题主要考查坐标系内三角形面积的计算,关系是确定三角形的底和高.
三、解答题
1、 (1)2,6
(2)①=4-m;1,5;,
【解析】
【分析】
(1)由对称的性质求得C、D点的坐标即可知.
(2)由对称的性质求得G点坐标为(-1,4-m),H点坐标为(2,2-m)
①因为,故4-m>2-m>0,则=4-m
②需分类讨论和的值大小,且需要将所求m值进行验证.
③需分类讨论,当,则且,当,则且,再取公共部分即可.
(1)
线段 上所有的点到轴的最大距离是2,则线段的界值
线段AB关于直线对称后得到线段,C点坐标为(-1,6),D点坐标为(2,4),线段CD 上所有的点到轴的最大距离是6,则线段的界值
(2)
设G点纵坐标为a,H点纵坐标为b
由题意有,
解得a=4-m,b=2-m
故G点坐标为(-1,4-m),H点坐标为(2,2-m)
①当,4-m>2-m>0
故=4-m
②若,则
即m=1或m=7
当m=1时,,,符合题意
当m=7时,,,,不符合题意,故舍去.
若,则
即m=-1或m=5
当m=-1时,,,,不符合题意,故舍去
当m=5时,,,符合题意.
则时,的值为1或5.
③当,则且
故有,
解得,
,
解得
故,
解得
故
当,则且
故有,
解得,
,
解得
故,
解得
故
综上所述,当时, 的取值范围为和.
【点睛】
本题考查了坐标轴中对称变化和含绝对值的不等式,本题不但要分类讨论4-m和2-m的大小关系,还有去绝对值的情况是解题的关键.的解集为,的解集为,.
2、 (1)见解析
(2)见解析
【解析】
【分析】
(1)根据旋转的性质即可作图;
(2)根据中心对称的性质即可作图.
(1)
如图所示;
(2)
如图所示△A2B2C2即为所求.
【点睛】
本题主要考查了作图-旋转变换,熟练掌握旋转的性质是解题的关键.
3、(1)①;②0;(2);(3)4或1
【解析】
【分析】
(1)①作图,求出,再根据定义求值即可;②通过数形结合的思想即可得到;
(2)根据求△ABC关于直线的对称度的最大值,即是求最大值即可;
(3)存在直线,使得APQ关于该直线的对称度为1,即转变为APQ是等腰三角形,需要分类进行讨论,分;;,同时需要满足t的值为整数.
【详解】
解:(1)①当时,根据题意作图如下:
,
为等腰直角三角形,
,
,
根据折叠的性质,
,
,
关于直线的对称度的值是:,
故答案是:;
②如图:
根据等腰三角形的性质,当时,有
,
ABC关于直线的对称度为1,
故答案是:0;
(2)过点N(0,n)作垂直于y轴的直线,要使得△ABC关于直线的对称度的最大值,
则需要使得最大,如下图:
当时,取到最大,
根据,可得为的中位线,
,
,
△ABC关于直线的对称度的最大值为:;
(3)若存在直线,使得APQ关于该直线的对称度为1,
即为等腰三角形即可,
①当时,为等腰三角形,如下图:
,
;
②当时,为等腰三角形,如下图:
,
;
③当时,为等腰三角形,如下图:
设,则,
根据勾股定理:,
,
解得:,
(不是整数,舍去),
综上:满足题意的整数的值为:4或1.
【点睛】
本题考查了三角形的折叠,对称类新概念问题、等腰三角形的性质、勾股定理,解题的关键是读懂题干信息,搞懂对称度的概念,再结合数形结合及分类讨论的思想进行求解.
4、(1)作图见解析;(2)16;(3)(0,4)或(0,-4).
【解析】
【分析】
(1)如图所示,由点C与点A关于y轴对称可知C坐标为(4,0),描点画图即可.
(2)得出△ABC的底和高再由三角形面积公式计算即可.
(3)S△ACD=S△ABC为同底不同高,故由(2)问知|yD|=4,再由点D在y轴上知D点坐标为(0,4)或(0,-4).
【详解】
解:(1)如图所示,点A为(-4,0),
∵点C与点A关于y轴对称
∴点C坐标为(4,0)
(2)由S△ABC=12×底×高有
S△ABC=12⋅|AC|⋅|yB|=12×|4-(-4)|×|4|=12×8×4=16
(3)∵S△ACD=S△ABC,AC=AC
∴|yB|=|yD|=4
即D点的纵坐标为4或-4
又∵D点在y轴上
故D点坐标为(0,4)或(0,-4).
【点睛】
本题考查了坐标轴中的点坐标问题、轴对称问题、求三角形面积,解题的关键是要运用数形结合的思想.
5、 (1)图见解析,点C1的坐标为
(2)图见解析
(3)16
【解析】
【分析】
(1)利用轴对称变换的性质分别作出,,的对应点,,即可;
(2)利用轴对称变换的性质分别作出,,的对应点,,即可;
(3)利用三角形面积公式求解即可.
(1)
解:如图,△即为所求,点的坐标;
(2)
解:如图,△即为所求;
(3)
解:.
【点睛】
本题考查作图轴对称变换,三角形面积等知识,解题的关键是掌握轴对称变换的性质,属于中考常考题型.
冀教版八年级下册第十九章 平面直角坐标系综合与测试复习练习题: 这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试复习练习题,共26页。试卷主要包含了点在第四象限,则点在第几象限,已知点A,在平面直角坐标系中,点P等内容,欢迎下载使用。
2021学年第十九章 平面直角坐标系综合与测试一课一练: 这是一份2021学年第十九章 平面直角坐标系综合与测试一课一练,共22页。试卷主要包含了已知点A,点A关于y轴的对称点A1坐标是等内容,欢迎下载使用。
冀教版八年级下册第十九章 平面直角坐标系综合与测试课时训练: 这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课时训练,共24页。