初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课时练习
展开
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课时练习,共24页。试卷主要包含了下列命题中为真命题的是,已知点A,如图是象棋棋盘的一部分,如果用等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在平面直角坐标系中,点关于轴的对称点的坐标是( )
A.B.C.D.
2、已知点与点关于y轴对称,则的值为( )
A.5B.C.D.
3、在平面直角坐标系中,下列各点与点(2,3)关于x轴对称的是( )
A.(2,﹣3)B.(3,2)C.(﹣2,﹣3)D.(﹣2,3)
4、下列命题中为真命题的是( )
A.三角形的一个外角等于两内角的和
B.是最简二次根式
C.数,,都是无理数
D.已知点E(1,a)与点F(b,2)关于x轴对称,则a+b=﹣1
5、如图,在平面直角坐标系中,已知,以为直边构造等腰,再以为直角边构造等腰,再以为直角边构造等腰,…,按此规律进行下去,则点的坐标为( )
A.B.C.D.
6、已知点A(m,2)与点B(1,n)关于y轴对称,那么m+n的值等于( )
A.﹣1B.1C.﹣2D.2
7、在平面直角坐标系xOy中,若在第三象限,则关于x轴对称的图形所在的位置是( )
A.第一象限B.第二象限C.第三象限D.第四象限
8、若点在第三象限,则点在( ).A.第一象限B.第二象限C.第三象限D.第四象限
9、如图是象棋棋盘的一部分,如果用(1,-2)表示帅的位置,那么点(-2,1)上的棋子是( )
A.相B.马C.炮D.兵
10、下列命题为真命题的是( )
A.过一点有且只有一条直线与已知直线平行B.在同一平面内,若,,则
C.的算术平方根是9D.点一定在第四象限
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在平面直角坐标系xOy中,点A(-3,0),B(3,0),C(3,2),如果△ABC与△ABD全等,那么点D的坐标可以是____(写出一个即可).
2、若A(x,4)关于y轴的对称点是B(﹣3,y),则x=____,y=____.点A关于x轴的对称点的坐标是____.
3、如图,在平面直角坐标系xOy中,点A(-3,0),B(-1,2).以原点O为旋转中心,将△AOB顺时针旋转90°,再沿y轴向下平移两个单位,得到△A′O′B′,其中点A′与点A对应,点B′与点B对应.则点B′的坐标为__________ .
4、经过点Q(0,1)且平行于x轴的直线可以表示为直线_________.
5、点关于y轴的对称点的坐标是______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平面直角坐标系xOy中,三角形ABC三个顶点的坐标分别为(-2,-2),(3,1),(0,2),若把三角形ABC向上平移3个单位长度,再向左平移1个单位长度得到三角形AʹBʹCʹ,点A,B,C的对应点分别为Aʹ,Bʹ,Cʹ.
(1)写出点Aʹ,Bʹ,Cʹ的坐标;
(2)在图中画出平移后的三角形AʹBʹCʹ;
(3)求三角形AʹBʹCʹ的面积.
2、如图,在平面直角坐标系中,的三个顶点为,,.
(1)画出关于x轴对称的;
(2)将的三个顶点的横坐标与纵坐标同时乘以-2,得到对应的点,,,画出.
3、如图,在正方形网格中,每个小正方形的边长都为1,点A,点B在网格中的位置如图所示.
(1)请在下面方格纸中建立适当的平面直角坐标系,使点A、点B的坐标分别为、;
(2)点C的坐标为,连接,则的面积为_________.
(3)在图中画出关于y轴对称的图形;
(4)在x轴上找到一点P,使最小,则的最小值是_________.
4、在平面直角坐标系xOy中,已知点A的坐标为(4,1),点B的坐标为(1,﹣2),BC⊥x轴于点C.
(1)在平面直角坐标系xOy中描出点A,B,C,并写出点C的坐标 ;
(2)若线段CD是由线段AB平移得到的,点A的对应点是C,则点B的对应点D的坐标为 ;
(3)求出以A,B,O为顶点的三角形的面积;
(4)若点E在过点B且平行于x轴的直线上,且△BCE的面积等于△ABO的面积,请直接写出点E的坐标.
5、已知二元一次方程,通过列举将方程的解写成下列表格的形式,
如果将二元一次方程的解所包含的未知数x的值对应直角坐标系中一个点的横坐标,未知数y的值对应这个点的纵坐标,这样每一个二元一次方程的解,就可以对应直角坐标系中的一个点,例如:解的对应点是.
(1)①表格中的______,______;
②根据以上确定対应点坐标的方法,在所给的直角坐标系中画出表格中给出的三个解的对应点;
(2)若点,恰好都落在的解对应的点组成的图象上,求a,b的值.
-参考答案-
一、单选题
1、B
【解析】
【分析】
利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,−y),进而求出即可.
【详解】
解:点P(−3,2)关于x轴的对称点的坐标为:(−3,−2).
故选:B.
【点睛】
此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.
2、A
【解析】
【分析】
点坐标关于轴对称,横坐标互为相反数,纵坐标相等,可求得的值,进而可求的值.
【详解】
解:由题意知:
解得
∴
故选A.
【点睛】
本题考查了关于轴对称的点坐标的关系,代数式求值等知识.解题的关键在于理解关于轴对称的点坐标,横坐标互为相反数,纵坐标相等.
3、A
【解析】
【分析】
关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数,据此直接作答即可.
【详解】
解:点(2,3)关于x轴对称的是
故选A
【点睛】
本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数”是解本题的关键.
4、D
【解析】
【分析】
利用三角形的外角的性质、最简二次根式的定义、无理数的定义及关于坐标轴对称的点的特点分别判断后即可确定正确的选项.
【详解】
解:A、三角形的外角等于不相邻的两个内角的和,故原命题错误,是假命题,不符合题意;
B、,不是最简二次根式,故原命题是假命题,不符合题意;
C、是有理数,故原命题错误,是假命题,不符合题意;
D、已知点E(1,a)与点F(b,2)关于x轴对称,a=1,b=-2,则a+b=﹣1,正确,为真命题,符合题意.
故选:D.
【点睛】
考查了命题与定理的知识,解题的关键是了解三角形的外角的性质、最简二次根式的定义、无理数的定义及关于坐标轴对称的点的特点,难度不大.
5、A
【解析】
【分析】
根据等腰直角三角形的性质得到OA1=,OA2=,OA3=,…,OA1033=,再利用A1、A2、A3、…,每8个一循环,再回到x轴的负半轴的特点可得到点A1033在x轴负半轴,即可确定点A1033的坐标.
【详解】
解:∵等腰直角三角形OA1A2的直角边OA1在x轴的负半轴上,且OA1=A1A2=,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,
∴OA1=,OA2=,OA3=,……,OA1033=,
∵A1、A2、A3、…,每8个一循环,再回到x轴的负半轴,
1033=8×129+1,
∴点A1033在x轴负半轴,
∵OA1033=,
∴点A1033的坐标为:,
故选:A.
【点睛】
本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于45°;斜边等于直角边的倍.也考查了直角坐标系中各象限内点的坐标特征.
6、B
【解析】
【分析】
关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此先求出m,n的值,然后代入代数式求解即可得.
【详解】
解:∵与点关于y轴对称,
∴,,
∴,
故选:B.
【点睛】
题目主要考查点关于坐标轴对称的特点,求代数式的值,理解题意,熟练掌握点关于坐标轴对称的特点是解题关键.
7、B
【解析】
【分析】
设内任一点A(a,b)在第三象限内,可得a<0,b<0,关于x轴对称后的点B(-a,b),则﹣a>0,b<0,然后判定象限即可.
【详解】
解:∵设内任一点A(a,b)在第三象限内,
∴a<0,b<0,
∵点A关于x轴对称后的点B(a,-b),
∴﹣b>0,
∴点B(a,-b)所在的象限是第二象限,即在第二象限.
故选:B.
【点睛】
本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.
8、A
【解析】
【分析】
根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.
【详解】
∵点P(m,n)在第三象限,
∴m<0,n<0,
∴-m>0,-n>0,
∴点在第一象限.
故选:A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
9、C
【解析】
【分析】
根据帅的位置,建立如图坐标系,并找出坐标对应的位置即可.
【详解】
解:如图,由(1,-2)表示帅的位置,建立平面直角坐标系,帅的位置向上2个单位,向左1个单位为坐标原点,故由图可知(-2,1)上的棋子是炮的位置;
故选C.
【点睛】
本题考查了直角坐标系上点的位置的应用.解题的关键在于正确的建立平面直角坐标系.
10、B
【解析】
【分析】
直接利用平行线的判定和性质、算术平方根的定义以及点的坐标特点分别判断即可.
【详解】
解:A、过直线外一点有且只有一条直线与已知直线平行,原命题是假命题;
B、在同一平面内,如果a⊥b,b⊥c,则a//c,原命题是真命题;
C、的算术平方根是3,原命题是假命题;
D、若a=0,则−a2=0,则点(1,−a2)在x轴上,故原命题是假命题;
故选:B.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
二、填空题
1、(3,-2)(答案不唯一)
【解析】
【分析】
如图,把沿轴对折可得 再根据的位置确定其坐标即可.
【详解】
解:如图,把沿轴对折可得:
则
同理:把,关于轴对折,可得:
综上:的坐标为:或或
故答案为:或或(任写一个即可)
【点睛】
本题考查的是轴对称的性质,三角形全等的性质,坐标与图形,熟练的利用轴对称确定全等三角形的对应顶点是解本题的关键.
2、 3 4 (3,﹣4)
【解析】
【分析】
根据点关于x轴对称则横坐标不变纵坐标互为相反数,关于y轴对称则纵坐标不变横坐标互为相反数即可求解.
【详解】
解:∵A(x,4)关于y轴的对称点是B(-3,y),
∴x=3,y=4,
∴A点坐标为(3,4),
∴点A关于x轴的对称点的坐标是(3,-4).
故答案为:3;4;(3,-4).
【点睛】
本题考查了点关于坐标轴对称的特点:点关于x轴对称则横坐标不变纵坐标互为相反数,关于y轴对称则纵坐标不变横坐标互为相反数,由此即可求解.
3、
【解析】
【分析】
根据题意画出相应的图形即可解答.
【详解】
解:根据题意画出图形,如图所示:
由图知,以原点O为旋转中心,将△AOB顺时针旋转90°,点B对应的坐标为(2,1),再沿y轴向下平移两个单位,对应的点B′坐标为(2,-1),
故答案为:(2,-1).
【点睛】
本题考查坐标与图形变换-旋转、坐标与图形变换-平移,正确画出变换后的图形是解答的关键.
4、y=1
【解析】
【分析】
根据平行于x轴的直线上所有点纵坐标相等,又直线经过点Q(0,1),则该直线上所有点的共同特点是纵坐标都是1.
【详解】
解:∵所求直线经过点Q(0,1)且平行于x轴,
∴该直线上所有点纵坐标都是1,
故可以表示为直线y=1,
故答案为:y=1.
【点睛】
本题考查了平行于坐标轴的直线上点的坐标特点:平行于x轴的直线上所有点纵坐标相等,平行于y轴的直线上所有点横坐标相等.
5、(3,4)
【解析】
【分析】
根据关于y轴对称的点的坐标特征:横坐标互为相反数,纵坐标不变,即可求得.
【详解】
点关于y轴的对称点的坐标是
故答案为:
【点睛】
本题考查了平面直角坐标系中关于y轴对称的点的坐标特征,掌握此特征是关键.
三、解答题
1、 (1)Aʹ(-3,1),Bʹ(2,4),Cʹ(-1,5);
(2)见解析
(3)△AʹBʹCʹ的面积为7.
【解析】
【分析】
(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)利用(1)中所求对应点位置画图形即可;
(3)利用△AʹBʹCʹ所在矩形面积减去周围多余三角形的面积进而得出答案.
(1)
解:根据平移的性质得: Aʹ(-3,1),Bʹ(2,4),Cʹ(-1,5);
(2)
解:如图所示:△AʹBʹCʹ即为所求;
(3)
解:△AʹBʹCʹ的面积为:4×5-×2×4-×1×3-×3×5=7.
【点睛】
本题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.
2、 (1)见解析
(2)见解析
【解析】
【分析】
(1)分别作出,,关于轴对称的三个点,连接即可得到.
(2)求出将A1(-1,-2),B1(-2,-1),C1(0,-1)横坐标与纵坐标同时乘以-2的对应点,连接即可得到.
(1)
解:分别作出,,关于轴对称的三个点为A1(-1,-2),B1(-2,-1),C1(0,-1),连接得到,如下图:
(2)
解:将将A1(-1,-2),B1(-2,-1),C1(0,-1)横坐标与纵坐标同时乘以-2的对应点分别为:A2(2,4),B2(4,2),C2(0,2),描点后连线得,如下图:
【点睛】
本题考查了作轴对称图形,坐标的变化,解题的关键是掌握坐标的变化规律,再准确描点.
3、 (1)见解析
(2)52
(3)见解析
(4)34
【解析】
【分析】
(1)根据A,B两点坐标确定平面直角坐标系即可;
(2)把三角形的面积看成矩形面积减去周围三个三角形面积即可;
(3)根据轴对称的性质找到对应点,顺次连接即可;
(4)作点A关于x轴的对称点A′,连接BA′交x轴于点P,此时AP+BP最小.
【小题1】
解:如图,平面直角坐标系如图所示;
【小题2】
如图,△ABC即为所求,
S△ABC=2×3-12×1×2-12×1×2-12×1×3=52;
【小题3】
如图,△A1B1C1即为所求;
【小题4】
如图,点P即为所求,
AP+BP=A′P+PB= A′B=52+32=34.
【点睛】
本题考查作图-轴对称变换,勾股定理、轴对称最短问题等知识,解题的关键是熟练掌握轴对称变换的性质,属于中考常考题型.
4、 (1)作图见解析,C点坐标为
(2)
(3)4.5
(4)E点坐标为或
【解析】
【分析】
(1)在平面直角坐标系中表示出A,B,C即可.
(2)由题意知,,将点C向下移动3格,向左移动3格到点D,得出坐标.
(3)利用分割法求面积,的面积等于矩形减去3个小三角形的面积,计算求值即可.
(4)设E点坐标为,由题意列方程求解即可.
(1)
解:如图,点A,B,C即为所求,C点坐标为(1,0)
故答案为:(1,0).
(2)
解:∵点A向下移动3格,向左移动3格到点B,
∴点C向下移动3格,向左移动3格到点D
∴D点坐标为
故答案为:.
(3)
解:∵
∴以A,B,O为顶点的三角形的面积为4.5.
(4)
解:设E点坐标为
由题意可得
解得:或
∴E点坐标为或.
【点睛】
本题考查了直角坐标系中的点坐标,平行的性质,分割法求面积,解一元一次方程等知识.解题的关键在于灵活运用知识求解.
5、 (1)①4,5;②图见解析
(2)
【解析】
【分析】
(1)①将代入方程可得的值,将代入方程可得的值;
②先确定三个解的对应点的坐标,再在所给的平面直角坐标系中画出即可得;
(2)将点,代入方程可得一个关于二元一次方程组,解方程组即可得.
(1)
解:①将代入方程得:,
解得,即,
将代入方程得:,
解得,即,
故答案为:4,5;
②由题意,三个解的对应点的坐标分别为,,,
在所给的平面直角坐标系中画出如图所示:
(2)
解:由题意,将代入得:,
整理得:,
解得.
【点睛】
本题考查了二元一次方程(组)、平面直角坐标系等知识点,熟练掌握二元一次方程组的解法是解题关键.
x
-3
-1
n
y
6
m
-2
相关试卷
这是一份八年级下册第十九章 平面直角坐标系综合与测试练习,共25页。试卷主要包含了若点P,点在第四象限,则点在第几象限,点关于轴对称点的坐标为等内容,欢迎下载使用。
这是一份2020-2021学年第十九章 平面直角坐标系综合与测试一课一练,共29页。试卷主要包含了点P,点关于轴的对称点是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步训练题,共23页。试卷主要包含了如果点P,在平面直角坐标系中,点,点A关于y轴的对称点A1坐标是等内容,欢迎下载使用。