初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后作业题
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列命题中,是真命题的有( )
①以1、、为边的三角形是直角三角形,则1、、是一组勾股数;
②若一直角三角形的两边长分别是5、12,则第三边长为13;
③二次根式是最简二次根式;
④在实数0,﹣0.3333……,,0.020020002,,0.23456…,中,无理数有3个;
⑤东经113°,北纬35.3°能确定物体的位置.
A.①②③④⑤B.①②④⑤C.②④⑤D.④⑤
2、在平面直角坐标系xOy中,若在第三象限,则关于x轴对称的图形所在的位置是( )
A.第一象限B.第二象限C.第三象限D.第四象限
3、已知点和点关于轴对称,则的值为( )
A.1B.C.D.
4、如图所示,在平面直角坐标系xOy中,△ABC关于直线y=1对称,已知点A的坐标是(3,4),则点B的坐标是( )
A.(3,﹣4)B.(﹣3,2)C.(3,﹣2)D.(﹣2,4)
5、如图,OA平分∠BOD,AC⊥OB于点C,且AC=2,已知点A到y轴的距离是3,那么点A关于x轴对称的点的坐标为( )
A.(2,3)B.(3,2)C.(-2,-3)D.(-3,-2)
6、在平面直角坐标系中,点(2,﹣5)关于x轴对称的点的坐标是( )
A.(2,5)B.(﹣2,5)C.(﹣2,﹣5)D.(2,﹣5)
7、平面直角坐标系中,点P(2,1)关于x轴对称的点的坐标是( )
A.B.C.D.
8、在下列说法中,能确定位置的是( )
A.禅城区季华五路B.中山公园与火车站之间
C.距离祖庙300米D.金马影剧院大厅5排21号
9、点关于轴对称点的坐标为( )
A.B.C.D.
10、下列各点中,在第二象限的点是( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若点M(1,a)与点N(b,3)关于y轴对称,则a=___,b=___.
2、,是平面直角坐标系中的两点,线段长度的最小值为 __.
3、中国象棋是一个有悠久历史的游戏.如图的棋盘上,可以把每个棋子看作是恰好在某个正方形顶点上的一个点,若棋子“帅”对应的数对,棋子“象”对应的数对,则图中棋盘上“卒”对应的数对是_______
4、在平面直角坐标系xOy中,横、纵坐标都是整数的点叫做整点.如图,点的坐标为(,4),点的坐标为(,1),点为第一象限内的整点,不共线的,,三点构成轴对称图形,则点的坐标可以是______(写出一个即可),满足题意的点的个数为________.
5、如图,在平面直角坐标系内,∠OA0A1=90°,∠A1OA0=60°,以OA1为直角边向外作Rt△OA1A2,使∠A2A1O=90°,∠A2OA1=60°,按此方法进行下去,得到 Rt△OA2A3,Rt△OA3A4…,若点A0的坐标是(1,0),则点A2021的横坐标是___________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知A点坐标为(﹣4,﹣3),B点坐标在x轴正半轴上,OB=OA.求:
(1)△ABO的面积.
(2)原点O到AB的距离.
(3)在x轴上是否存在一点P使得△POA面积15,直接写出点P坐标.
2、如图,在△ABC中,AC=2,AB=4,BC=6,点P为边BC上的一个动点(不与点B、C重合),点P关于直线AB的对称点为点Q,联结PQ、CQ,PQ与边AB交于点D.
(1)求∠B的度数;
(2)联结BQ,当∠BQC=90°时,求CQ的长;
(3)设BP=x,CQ=y,求y关于x的函数解析式,并写出函数的定义域.
3、在平面直角坐标系中,A(a,0),B(b,0),C(c,0),a≠0且a,b,c满足条件.
(1)直接写出△ABC的形状 ;
(2)点D为射线BC上一动点,E为射线CO上一点,且∠ACB=120°,∠ADE=60°
① 如图1,当点E与点C重合时,求AD的长;
② 如图2,当点D运动到线段BC上且CD=2BD,求点E的坐标;
4、这是某乡镇的示意图.试建立直角坐标系,用坐标表示各地的位置:
5、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立如图所示的平面直角坐标系后,的顶点均在格点上,且坐标分别为:A(3,3)、B(-1,1)、C(4,1).依据所给信息,解决下列问题:
(1)请你画出将向右平移3个单位后得到对应的;
(2)再请你画出将沿x轴翻折后得到的;
(3)若连接、,请你直接写出四边形的面积.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据勾股数的定义、勾股定理、最简二次根式定义、无理数定义、有序数对定义分别判断.
【详解】
解:①以1、、为边的三角形是直角三角形,但1、、不是勾股数,故该项不是真命题;
②若一直角三角形的两边长分别是5、12,则第三边长为13或,故该项不是真命题;
③二次根式不是最简二次根式,故该项不是真命题;
④在实数0,﹣0.3333……,,0.020020002,,0.23456…,中,无理数有3个,故该项是真命题;
⑤东经113°,北纬35.3°能确定物体的位置,故该项是真命题;
故选:D.
【点睛】
此题考查了真命题的定义:正确的命题是真命题,正确掌握勾股数的定义、勾股定理、最简二次根式定义、无理数定义、有序数对定义是解题的关键.
2、B
【解析】
【分析】
设内任一点A(a,b)在第三象限内,可得a<0,b<0,关于x轴对称后的点B(-a,b),则﹣a>0,b<0,然后判定象限即可.
【详解】
解:∵设内任一点A(a,b)在第三象限内,
∴a<0,b<0,
∵点A关于x轴对称后的点B(a,-b),
∴﹣b>0,
∴点B(a,-b)所在的象限是第二象限,即在第二象限.
故选:B.
【点睛】
本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.
3、A
【解析】
【分析】
直接利用关于轴对称点的性质(横坐标不变,纵坐标互为相反数)得出,的值,进而得出答案.
【详解】
解答:解:点和点关于轴对称,
,,
则
.
故选:A.
【点睛】
此题主要考查了关于轴对称点的性质,正确得出,的值是解题关键.
4、C
【解析】
【分析】
根据轴对称的性质解决问题即可.
【详解】
解:∵△ABC关于直线y=1对称,
∴点A和点B是关于直线y=1对称的对应点,它们到y=1的距离相等是3个单位长度,
∵点A的坐标是(3,4),
∴B(3,﹣2),
故选:C.
【点睛】
本题主要考查了坐标的对称特点.解此类问题的关键是要掌握轴对称的性质:对称轴垂直平分对应点的连线.利用此性质可在坐标系中得到对应点的坐标.
5、D
【解析】
【分析】
根据点A到y轴的距离是3,得到点A横坐标为-3,根据角的平分线的性质定理,得到点A到x轴的距离为2即点A的纵坐标为2,根据x轴对称的特点确定坐标.
【详解】
∵点A到y轴的距离是3,
∴点A横坐标为-3,
过点A作AE⊥OD,垂足为E,
∵∠DAO=∠CAO,AC⊥OB,AC=2,
∴AE=2,
∴点A的纵坐标为2,
∴点A的坐标为(-3,2),
∴点A关于x轴对称的点的坐标为(-3,-2),
故选D.
【点睛】
本题考查了角的平分线的性质,点到直线的距离,点的轴对称坐标,正确确定点的坐标,熟练掌握对称点坐标的特点是解题的关键.
6、A
【解析】
【分析】
根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),据此即可求得点A(2,﹣5)关于x轴对称的点的坐标.
【详解】
解:∵点(2,﹣5)关于x轴对称,
∴对称的点的坐标是(2,5).
故选:A.
【点睛】
本题主要考查了关于x轴对称点的性质,点P(x,y)关于x轴的对称点P′的坐标是(x,-y).
7、B
【解析】
【分析】
直接利用关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,得出答案.
【详解】
解:点P(2,1)关于x轴对称的点的坐标是(2,-1).
故选:B.
【点睛】
本题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.
8、D
【解析】
【分析】
根据确定位置的方法逐一判处即可.
【详解】
解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;
B、中山公园与火车站之间,没能确定准确位置,故不符合题意;
C、距离祖庙300米,有距离但没有方向,故不符合题意;
D、金马影剧院大厅5排21号,确定了位置,故符合题意.
故选:D
【点睛】
本题考查了位置的确定,熟练掌握常见的确定位置的方法:①用有序数对确定物体位置;②用方向和距离来确定物体的位置.
9、D
【解析】
【分析】
根据关于x轴对称的两个点,横坐标相等,纵坐标互为相反数即可求解
【详解】
点关于轴对称点的坐标为
故选D
【点睛】
本题考查了关于x轴对称的两个点的坐标特征,掌握关于x轴对称的两个点,横坐标相等,纵坐标互为相反数是解题的关键.
10、D
【解析】
【分析】
根据第二象限内的点的横坐标为负,纵坐标为正判断即可.
【详解】
解:∵第二象限内的点的横坐标为负,纵坐标为正,
∴在第二象限,
故选:D.
【点睛】
本题考查了象限内点的坐标的特征,解题关键是熟记第二象限内点的横坐标为负,纵坐标为正.
二、填空题
1、 3
【解析】
【分析】
根据平面直角坐标系中两个点关于坐标轴成轴对称的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数,据此直接求解即可.
【详解】
解:∵点与点关于y轴对称,
∴,,
故答案为:3;.
【点睛】
题目主要考查平面直角坐标系中两个点关于坐标轴成轴对称的特点,理解对称点的坐标规律是解题关键.
2、3
【解析】
【分析】
画出图形,根据垂线段最短解答即可.
【详解】
解:如图.
,
在轴上.
线段的长度为点到y轴上点的距离.
若使得线段长度的最小,由垂线段最短,可知当A在时,即轴,线段长度最小.
此时最小值为3.
故答案为:3.
【点睛】
本题考查了坐标与图形,垂线段最短,数形结合是解答本题的关键.
3、
【解析】
【分析】
“帅”对应的数对(1,0),“象”对应的数对(3,−2),可建立平面直角坐标系;如图,以“马”为原点,连接“马”、“帅”为x轴,垂直于x轴并过“马”为y轴;进而确定“卒”对应的数对.
【详解】
解:由题意中的“帅”与“象”对应的数对,建立如图的直角坐标系
∴可知“卒”对应的数对为;
故答案为:.
【点睛】
本题考查了有序数对与平面直角坐标系中点的位置.解题的关键在建立正确的平面直角坐标系.
4、 (,)(答案不唯一) 7
【解析】
【分析】
根据题意建立平面直角坐标系,进而根据题意找等腰三角形即可
【详解】
建立如下坐标系,如图,则点
如图,根据题意不共线的,,三点构成轴对称图形,则是等腰三角形,根据等腰三角形的性质可得这样的点有7个,分别为:
故答案为:(3,1);7
【点睛】
本题考查了等腰三角形的判定,轴对称的性质,将题目转化为找等腰三角形是解题的关键.
5、22020
【解析】
【分析】
根据,,点的坐标是,得,点 的横坐标是,点 的横坐标是-,同理可得点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,依次进行下去,可得点的横坐标,进而求得的横坐标.
【详解】
解:∵∠OA0A1=90°,∠A1OA0=60°,点A0的坐标是(1,0),
∴OA0=1,
∴点A1 的横坐标是 1=20,
∴OA1=2OA0=2,
∵∠A2A1O=90°,∠A2OA1=60°,
∴OA2=2OA1=4,
∴点A2 的横坐标是- OA2=-2=-21,
依次进行下去,Rt△OA2A3,Rt△OA3A4…,
同理可得:
点A3 的横坐标是﹣2OA2=﹣8=﹣23,
点A4 的横坐标是﹣8=﹣23,
点A5 的横坐标是 OA5=×2OA4=2OA3=4OA2=16=24,
点A6 的横坐标是2OA5=2×2OA4=23OA3=64=26,
点A7 的横坐标是64=26,
…
发现规律,6次一循环,
即
,
,
2021÷6=336……5
则点A2021的横坐标与的坐标规律一致是 22020.
故答案为:22020.
【点睛】
本题考查了规律型——点的坐标,解决本题的关键是理解动点的运动过程,总结规律,发现规律,点A3n在轴上,且坐标为.
三、解答题
1、 (1)
(2)
(3)存在,点P坐标为(﹣10,0)或(10,0)
【解析】
【分析】
(1)过A作AC⊥x轴于C,则OC=4,AC=3,由勾股定理得OA=5,则OB=OA=5,再由三角形面积公式求解即可;
(2)过O作OD⊥AB于D,由勾股定理得AB=3,再由三角形面积公式得S△ABO=AB×OD=,则OD=,即可求解;
(3)过A作AC⊥x轴于C,由三角形面积求出OP=10,分两种情况即可求解.
(1)
解:过A作AC⊥x轴于C,如图1所示:
∵A点坐标为(﹣4,﹣3),
∴OC=4,AC=3,
∴OA===5,
∴OB=OA=5,
∴S△ABO=OB×AC=×5×3=;
(2)
解:过O作OD⊥AB于D,如图2所示:
由(1)得:OA=OB=5,AC=3,OC=4,
∴BC=OB+OC=5+4=9,
∴AB===3,
∵S△ABO=AB×OD=×3×OD=,
∴OD=,
即原点O到AB的距离为;
(3)
解:在x轴上存在一点P使得△POA面积15,理由如下:
如图3所示:
由(1)得:AC=3,
∵S△POA=OP×AC=×OP×3=15,
∴OP=10,
当点P在x轴负半轴时,点P坐标为(﹣10,0);
当点P在x轴正半轴时,点P坐标为(10,0);
综上所述,在x轴上存在一点P使得△POA面积15,点P坐标为(﹣10,0)或(10,0).
【点睛】
本题考查坐标与图形、勾股定理、三角形的面积公式,利用数形结合和分类讨论思想求解是解答的关键.
2、 (1)30°
(2)
(3)y=(0<x<6)
【解析】
【分析】
(1)由勾股定理的逆定理可得出,由直角三角形的性质可得出答案;
(2)求出,由直角三角形的性质得出.由勾股定理可得出答案;
(3)过点作于点,证明为等边三角形,由勾定理得出,则可得出答案.
(1)
解:,,,
,,
,
,
,
;
(2)
解:点关于直线的对称点为点,
垂直平分,
,
,
,
,
,
,
.
;
(3)
解:过点作于点,
,,
为等边三角形,
,,
,
,
,
,,
,
关于的函数解析式为.
【点睛】
本题是三角形综合题,考查了直角三角形的性质,等边三角形的判定与性质,勾股定理,轴对称的性质,解题的关键是熟练掌握勾股定理.
3、(1)等腰三角形,证明见解析;(2)①6;②E(0,-7).
【解析】
【分析】
(1)先证明a=-b, 再证明OA=OB, AC=BC, 从而可得答案;
(2)① 先证明△ACD是等边三角形,可得AD=CD=AC, 再证明AD=AC=BC,
再利用含30°的直角三角形的性质求解BC=6, 从而可得答案;②在CE上取点F,使CF=CD,连接DF,记AD,CE的交点为K,如图所示:证明△CDF是等边三角形, 再证明△ACD≌△EFD(AAS), 可得AC=EF,再求解BD=2,CF=CD=4, 再求解OE=10-3=7, 从而可得答案.
【详解】
解:(1) ,
∴{a+b=0c-3=0
解得:{a=-bc=3
A(-b,0),B(b,0),C(3,0),
∴OA=OB, 而OC⊥AB,
∴AC=BC,
是等腰三角形.
(2)① ∠ACB=120°,∠ADE=60°,∠ACB=∠D+∠DAC,
∴∠DAC=60°,
∴△ACD是等边三角形,
∴AD=CD=AC,
∵AC=BC,
∴∠ABC=∠CAB=30°,
∴∠DAB=90°,
∴BD=BC+CD=2AD
∴AD=DC=BC,
∵CO=3,CO⊥AB,
∴BC=6,
∴AD=6.
②在CE上取点F,使CF=CD,连接DF,记AD,CE的交点为K,如图所示:
∵AC=BC,∠ACB=120°,
∴∠ACO=∠BCO=60°,
∴△CDF是等边三角形,
∴∠CFD=60°,CD=FD,
∴∠EFD=120°,
∵∠ACO=∠ADE=60°,∠AKC=∠FKD,
∴∠CAD=∠CED,
又∵∠ACD=∠EFD=120°,
∴△ACD≌△EFD(AAS),
∴AC=EF, 由(1)得:c=3, ∴OC=3,
∵∠AOC=90°,∠ACO=60°,
∴∠OAC=30°,
∴BC=AC=2OC=6,EF=AC=6,
∵CD=2BD, ∴BD=2,CF=CD=4,
∴CE=EF+CF=6+4=10,
∴OE=CE-OC=10-3=7,
∴E(0,-7).
【点睛】
本题考查的是算术平方根的非负性,全等三角形的判定与性质,等腰三角形的判定与性质,等边三角形的判定与性质,含30°的直角三角形的性质,图形与坐标,线段垂直平分线的性质,掌握以上知识是解题的关键.
4、见解析
【解析】
【详解】
5、(1)见解析;(2)见解析;(3)16
【解析】
【分析】
(1)利用平移的性质得出对应点位置进而得出答案;
(2)利用关于x轴对称的点的坐标找出A2、B2、C2的坐标,然后描点即可;
(3)运用割补法求解即可
【详解】
解:(1)如图,即为所作;
(2)如图,即为所作;
(3)四边形的面积=12×(2+6)×4=16
【点睛】
此题主要考查了轴对称变换以及平移变换和四边形面积求法,根据题意得出对应点位置是解题关键.
冀教版八年级下册第十九章 平面直角坐标系综合与测试课后练习题: 这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课后练习题,共23页。试卷主要包含了在平面直角坐标系中,点在,点关于轴的对称点是等内容,欢迎下载使用。
冀教版八年级下册第十九章 平面直角坐标系综合与测试课时作业: 这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课时作业,共21页。
2020-2021学年第十九章 平面直角坐标系综合与测试巩固练习: 这是一份2020-2021学年第十九章 平面直角坐标系综合与测试巩固练习,共26页。试卷主要包含了下列命题为真命题的是,在平面直角坐标系中,已知点P,点关于轴的对称点是等内容,欢迎下载使用。