数学八年级下册第十九章 平面直角坐标系综合与测试课后复习题
展开
这是一份数学八年级下册第十九章 平面直角坐标系综合与测试课后复习题,共26页。试卷主要包含了下列说法错误的是,点在第四象限,则点在第几象限,若点P等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知点P(a,3)和点Q(4,b)关于x轴对称,则a+b的值为( ).A.1 B. C.7 D.2、若y轴负半轴上的点P到x轴的距离为2,则点P的坐标为( )A.(0,2) B.(2,0) C.(﹣2,0) D.(0,﹣2)3、点P在第二象限内,点P到x轴的距离是6,到y轴的距离是2,那么点P的坐标为( )A.(﹣6,2) B.(﹣2,﹣6) C.(﹣2,6) D.(2,﹣6)4、下列说法错误的是( )A.平面内两条互相垂直的数轴就构成了平面直角坐标系B.平面直角坐标系中两条数轴是互相垂直的C.坐标平面被两条坐标轴分成了四个部分,每个部分称为象限D.坐标轴上的点不属于任何象限5、如图,在平面直角坐标系中,可以看作是经过若干次图形的变化(平移、轴对称)得到的,下列由得到的变化过程错误的是( )A.将沿轴翻折得到B.将沿直线翻折,再向下平移个单位得到C.将向下平移个单位,再沿直线翻折得到D.将向下平移个单位,再沿直线翻折得到6、在平面直角坐标系的第二象限内有一点P,点P到x轴的距离为2,到y轴的距离为3,则点P的坐标是( )A. B. C. D.7、点在第四象限,则点在第几象限( )A.第一象限 B.第二象限 C.第三象限 D.第四象限8、若点P(m,1)在第二象限内,则点Q(1﹣m,﹣1)在( )A.第四象限 B.第三象限 C.第二象限 D.第一象限9、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(a,b)平移后的对应点的坐标为( )A.(a,b) B.(-a,-b) C.(a+2,b+4) D.(a+4,b+2)10、在平面直角坐标系xOy中,点A(0,2),B(a,0),C(m,n)(n>0).若△ABC是等腰直角三角形,且AB=BC,当0<a<1时,点C的横坐标m的取值范围是( )A.0<m<2 B.2<m<3 C.m<3 D.m>3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角在坐标系中,四边形OACB的两边OA,OB分别在x轴、y轴的正半轴上,其中,且CO平分,若,,则点C的坐标为______.2、已知点A(a,-3)与点B(3,b)关于y轴对称,则a+b=_____________________.3、5在平面直角坐标系xOy中,对于点P(x,y),我们把点P(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,A3的伴随点为A4…,这样依次得到点A1,A2,A3,…,An,…,若点A1的坐标为(3,1),则点A3的坐标为__;若点A1的坐标为(a,b),且a,b均为整数,对于任意的正整数n,点An均在x轴上方,则点A1的坐标为__.4、请将命题“坐标轴上的点至少有一个坐标为0”改写成“如果那么”的形式__.5、点P(4,a)关于y轴的对称点是Q(b,-2),则ab的值为_________.三、解答题(5小题,每小题10分,共计50分)1、如图所示,在平面直角坐标系中,的顶点坐标分别是,和.(1)已知点关于轴的对称点的坐标为,求,的值;(2)画出,且的面积为 ;(3)画出与关于轴成对称的图形,并写出各个顶点的坐标.2、在的正方形网格中,小正方形的边长均为1个单位长度.(1)画出绕点O逆时针旋转90°的;(2)再画出关于点O的中心对称图形.3、已知:在平面直角坐标系中,点A(m,n),且m、n满足关系式m=,点B(﹣3,0),点C在x轴正半轴上,AC交y轴于点E.(1)点A的坐标为( , );(2)如图1,若S△ABC=15,求线段BC的长;(3)如图2,在(2)的条件下,点E处有一动点P以每秒2个单位长度的速度先沿线段EO运动到点O,再继续以相同的速度沿x轴负半轴运动到点B后停止运动,求当t为何值时,S△AOE=S△BEP.4、如图,在直角坐标平面内,已知点A的坐标(﹣2,0).(1)图中点B的坐标是______;(2)点B关于原点对称的点C的坐标是_____;点A关于y轴对称的点D的坐标是______;(3)四边形ABDC的面积是______;(4)在y轴上找一点F,使,那么点F的所有可能位置是______.5、如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1(2)写出点A1,B1,C1的坐标. -参考答案-一、单选题1、A【解析】【分析】直接利用关于x轴对称点的性质(横坐标不变,纵坐标互为相反数)得出a,b的值,进而得出答案.【详解】解:∵点P(a,3)和点Q(4,b)关于x轴对称,∴a=4,b=-3,则a+b =4-3=1.故选:A.【点睛】本题主要考查了关于x轴对称点的性质,正确得出a,b的值是解题关键.2、D【解析】【分析】点P在y轴上则该点横坐标为0,据此解答即可.【详解】∵y轴负半轴上的点P到x轴的距离为2,∴点P的坐标为(0,﹣2).故选:D.【点睛】本题考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.3、C【解析】【分析】根据点(x,y)到x轴的距离为|y|,到y轴的距离|x|解答即可.【详解】解:设点P坐标为(x,y),∵点P到x轴的距离是6,到y轴的距离是2,∴|y|=6,|x|=2,∵点P在第二象限内,∴y=6,x=-2,∴点P坐标为(-2,6),故选:C.【点睛】本题考查点到坐标轴的距离、点所在的象限,熟知点到坐标轴的距离与坐标的关系是解答的关键.4、A【解析】略5、C【解析】【分析】根据坐标系中平移、轴对称的作法,依次判断四个选项即可得.【详解】解:A、根据图象可得:将沿x轴翻折得到,作图正确;B、作图过程如图所示,作图正确;C、如下图所示为作图过程,作图错误;D、如图所示为作图过程,作图正确;故选:C.【点睛】题目主要考查坐标系中图形的平移和轴对称,熟练掌握平移和轴对称的作法是解题关键.6、C【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数以及点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【详解】解:∵第二象限的点P到x轴的距离是2,到y轴的距离是3,∴点P的横坐标是-3,纵坐标是2,∴点P的坐标为(-3,2).故选:C.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.7、C【解析】【分析】根据点A(x,y)在第四象限,判断x,y的范围,即可求出B点所在象限.【详解】∵点A(x,y)在第四象限,∴x>0,y<0,∴﹣x<0,y﹣2<0,故点B(﹣x,y﹣2)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8、A【解析】【分析】直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.【详解】∵点P(m,1)在第二象限内,∴m<0,∴1﹣m>0,则点Q(1﹣m,﹣1)在第四象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9、D【解析】【分析】根据点A的坐标和点的坐标确定平移规律,即可求出点P(a,b)平移后的对应点的坐标.【详解】解:∵△A′B′O′是由△ABO平移得到的,点A的坐标为(-1,2),它的对应点A′的坐标为(3,4),∴△ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,∴△ABO内任意点P(a,b)平移后的对应点P′的坐标为(a+4,b+2).故选:D.【点睛】此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律.点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小.10、B【解析】【分析】过点C作CD⊥x轴于D,由“AAS”可证△AOB≌△BDC,可得AO=BD=2,BO=CD=n=a,即可求解.【详解】解:如图,过点C作CD⊥x轴于D,∵点A(0,2),∴AO=2,∵△ABC是等腰直角三角形,且AB=BC,∴∠ABC=90°=∠AOB=∠BDC,∴∠ABO+∠CBD=90°=∠ABO+∠BAO,∴∠BAO=∠CBD,在△AOB和△BDC中, ,∴△AOB≌△BDC(AAS),∴AO=BD=2,BO=CD=n=a,∴0<a<1,∵OD=OB+BD=2+a=m,∴ ∴2<m<3,故选:B.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.二、填空题1、【解析】【分析】取AB的中点E,连接OE,CE并延长交x轴于点F,根据直角三角形斜边 上的中线等于斜边的一半证明CE=OE=AE,再进一步证明;由勾股定理求出AB=,AO=BO=5;过点O作OG⊥OC交CA的延长线于点G,证明△COG访问团等腰直角三角形,可可求出OC=7;过点C作CH⊥x轴,垂足为H,设C(m,n),则OH=m,CH=n,AH=5-m,根据勾股定理可得方程组 ,求出方程组的解,取正值即可.【详解】解:取AB的中点E,连接OE,CE并延长交x轴于点F,如图,∵,OC平分∠ACB,∴ ∵均为直角三角形,∴ ∴∴ ∴ ∵ ∴∴ ∴ ∴是等腰直角三角形,∴ ∵ 由勾股定理得, ∴ ∴ 过点O作OE⊥OC交CA的延长线于点G,∵∠OCA=45°,∴∠G=45°,∴△COG为等腰直角三角形,∴OC=OG,∵∠BOC+∠COA=∠COA+∠AOG=90°,∴∠BOC=∠AOG,∵∠OCB=∠OEA=45°,∴△COB≌△GOA(ASA),∴BC=AG=,∵CG=AC+AG=∵△OCE为等腰直角三角形,∴OC=7过点C作CH⊥x轴于点H,设C(m,n),∴OH=m,CH=n,AH=5-m在Rt△CHO和Rt△CHA中,由勾股定理得,解得,,(负值舍去)∴C()故答案为:()【点睛】本题主要考查了坐标玮图形的性质,全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,添加恰当辅助线构造全等三角形是本题的关键.2、【解析】【分析】由点A(a,-3)与点B(3,b)关于y轴对称,可得从而可得答案.【详解】解: 点A(a,-3)与点B(3,b)关于y轴对称, 故答案为:【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的横坐标互为相反数,纵坐标不变”是解本题的关键.3、 (﹣3,1) (0,1)【解析】【分析】(1)根据“伴随点”的定义依次求出, ;(2)再写出点A1(a,b)的“伴随点”,然后根据x轴上方的点的纵坐标大于0列出不等式组求解即可.【详解】(1)解:∵A1的坐标为(3,1),∴A2的横坐标为﹣1+1=0,纵坐标为3+1=4,∴A2(0,4),∴A3的横坐标为﹣4+1=﹣3,纵坐标为0+1=1,∴A3(﹣3,1),故答案为:(﹣3,1);(2)解∵点A1的坐标为(a,b),∴A2(﹣b+1,a+1),A3(﹣a,﹣b+2),A4(b﹣1,﹣a+1),A5(a,b),…,依此类推,每4个点为一个循环组依次循环,∵对于任意的正整数n,点An均在x轴上方, ,,解得﹣1<a<1,0<b<2,∵a,b均为整数,∴a=0,b=1,∴A1的坐标为(0,1),故答案为(0,1).【点睛】本题考查对新定义的理解和运用,以及考察解不等式组,能够对新定义的快速理解和运用是解决本题的关键.4、如果一个点在坐标轴上,那么这个点至少有一个坐标为0【解析】【分析】命题是由题设与结论两部分组成,如果后面的是题设,那么后面的是结论,根据定义直接改写即可.【详解】解:将命题“坐标轴上的点至少有一个坐标为0”改写成“如果那么”的形式:如果一个点在坐标轴上,那么这个点至少有一个坐标为0.故答案为:如果一个点在坐标轴上,那么这个点至少有一个坐标为0.【点睛】本题考查的命题的组成,把一个命题改写成“如果那么”的形式,平面直角坐标系坐标轴上点的坐标特点,掌握“命题是由题设与结论两部分组成”是解本题的关键.5、8【解析】【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,横坐标不变,列式求得a、b即可解答.【详解】解:∵点P(4,a)关于x轴的对称点为Q(b,-2),∴a=-2,b=-4,∴ab=8,故答案是:8.【点睛】本题主要考查了关于y轴对称点的坐标特点,关于y轴对称点的坐标特点是“横坐标互为相反数,纵坐标不变” .三、解答题1、(1),;(2)作图见详解;13;(3)作图见详解;,,.【解析】【分析】(1)利用关于x轴的对称点的坐标特点(横坐标不变,纵坐标互为相反数)直接写出答案即可;(2)先确定A、B、C点的位置,然后顺次连接,最后运用割补法计算三角形面积即可;(3)先确定A、B、C三点关于y轴对称的对称点位置,然后顺次连接即可;最后直接写出三个点的坐标即可.【详解】解:(1)∵点关于x轴的对称点P的坐标为,∴,;(2)如图:即为所求,,故答案为:13;(3)如图:A、B、C点关于y轴的对称点为:,,,顺次连接,∴即为所求,,.【点睛】此题主要考查了轴对称变换的作图题,确定组成图形关键点的对称点是解答本题的关键.2、 (1)见解析(2)见解析【解析】【分析】(1)根据旋转的性质即可作图;(2)根据中心对称的性质即可作图.(1)如图所示;(2)如图所示△A2B2C2即为所求.【点睛】本题主要考查了作图-旋转变换,熟练掌握旋转的性质是解题的关键.3、 (1)﹣1,5(2)BC=6(3)t的值为或【解析】【分析】(1)根据二次根式的被开方数非负可得关于n的不等式组,解不等式组可求得n的值,从而求得m的值,最后可求得点A的坐标;(2)过点A作AF⊥x轴于点F,由点A的坐标可得AF的长,由面积条件即可求得BC的长;(3)由BC的长度及点B的坐标可求得点C的坐标,由S△AOB+SAOE+S△EOC=S△ABC=15可求得OE的长;分点P在OE上和点P在OB上两种情况考虑,求出△BEP的面积表达式,再根据题中的面积关系式即可求得时间t.(1)∵m、n满足关系式,∴,∴n=5,∴m=﹣1,故答案为:﹣1,5;(2)过点A作AF⊥x轴于点F,∵A(﹣1,5),∴AF=5,∴S△ABC=,∴BC=6;(3)∵BC=6,B(﹣3,0),∴C(3,0),∵S△AOB+SAOE+S△EOC=S△ABC=15,∴,∴OE=,①若点P在OE上,则PE=2t,∴S△BEP=×2t×3=3t,S△AOE=,∴,∴;②若点P在OB上,BP=3+﹣2t=﹣2t,∴S△BEP==,∴,∴t=.综合以上可得t的值为或.【点睛】本题考查了坐标与图形的面积,二次根式的意义,涉及分类讨论思想.4、 (1)(﹣3,4)(2)(3,﹣4),(2,0)(3)16(4)(0,4)或(0,﹣4)【解析】【分析】(1)根据坐标的定义,判定即可;(2)根据原点对称,y轴对称的点的坐标特点计算即可;(3)把四边形的面积分割成三角形的面积计算;(4)根据面积相等,确定OF的长,从而确定坐标.(1)过点B作x轴的垂线,垂足所对应的数为﹣3,因此点B的横坐标为﹣3,过点B作y轴的垂线,垂足所对应的数为4,因此点B的纵坐标为4,所以点B(﹣3,4);故答案为:(﹣3,4);(2)由于关于原点对称的两个点坐标纵横坐标均为互为相反数,所以点B(﹣3,4)关于原点对称点C(3,﹣4),由于关于y轴对称的两个点,其横坐标互为相反数,其纵坐标不变,所以点A(﹣2,0)关于y轴对称点D(2,0),故答案为:(3,﹣4),(2,0);(3)=2××4×4=16,故答案为:16;(4)∵==8=,∴AD•OF=8,∴OF=4,又∵点F在y轴上,∴点F(0,4)或(0,﹣4),故答案为:(0,4)或(0,﹣4).【点睛】本题考查了坐标系中对称点的坐标确定,图形的面积计算,正确理解坐标的意义,适当分割图形是解题的关键.5、 (1)见解析(2)A1(1,5),B1(1,0),C1(4,3)【解析】【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)根据A1,B1,C1的位置写出坐标即可.(1)解:所作图形△A1B1C1如下所示:(2)解:根据所作图形知:A1(1,5),B1(1,0),C1(4,3).【点睛】本题考查作图-轴对称变换,解题的关键是熟练掌握基本知识.关于y轴对称的点,纵坐标相同,横坐标互为相反数.
相关试卷
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课后练习题,共23页。试卷主要包含了在平面直角坐标系中,点在,点关于轴的对称点是等内容,欢迎下载使用。
这是一份2020-2021学年第十九章 平面直角坐标系综合与测试巩固练习,共26页。试卷主要包含了下列命题为真命题的是,在平面直角坐标系中,已知点P,点关于轴的对称点是等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试同步练习题,共24页。试卷主要包含了在平面直角坐标系中,点,在平面直角坐标系中,将点A,下列命题中,是真命题的有,点P关于y轴对称点的坐标是.等内容,欢迎下载使用。