冀教版八年级下册第十九章 平面直角坐标系综合与测试同步训练题
展开
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试同步训练题,共23页。试卷主要包含了下列各点中,在第二象限的点是等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在下列说法中,能确定位置的是( )A.禅城区季华五路 B.中山公园与火车站之间C.距离祖庙300米 D.金马影剧院大厅5排21号2、在平面直角坐标系中,将点A(﹣3,﹣2)向右平移5个单位长度得到的点坐标为( )A.(2,2) B.(﹣2,2) C.(﹣2,﹣2) D.(2,﹣2)3、在平面直角坐标系xOy中,若在第三象限,则关于x轴对称的图形所在的位置是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限4、在平面直角坐标系中,点关于轴的对称点的坐标是( )A. B. C. D.5、在平面直角坐标系中,所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限6、下列各点中,在第二象限的点是( )A. B. C. D.7、在平面直角坐标系中,点P(-2,1)向右平移3个单位后位于( )A.第一象限 B.第二象限 C.第三象限 D.第四象限8、若点P位于平面直角坐标系第四象限,且点P到x轴的距离是1,到y轴的距离是2,则点P的坐标为( )A. B. C. D.9、小嘉去电影院观看《长津湖》,如果用表示5排7座,那么小嘉坐在7排8座可表示为( )A. B. C. D.10、如图,OA平分∠BOD,AC⊥OB于点C,且AC=2,已知点A到y轴的距离是3,那么点A关于x轴对称的点的坐标为( )A.(2,3) B.(3,2) C.(-2,-3) D.(-3,-2)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、边长相等、各内角均为120°的六边形ABCDEF在直角坐标系内的位置如图所示,,点B在原点,把六边形ABCDEF沿x轴正半轴绕顶点按顺时针方向,从点B开始逐次连续旋转,每次旋转60°,经过2021次旋转之后,点B的坐标是_____________.2、在平面直角坐标系中,若点到轴的距离是3,则的值是 __.3、平面直角坐标系中,将点A(﹣2,1)向右平移4个单位长度,再向下平移3个单位长度得到点A′,则点A′的坐标为_____.4、点 A(4,-3)关于 y 轴的对称点的坐标是______,关于原点对称的点的坐标是_________,到原点的距离是____.5、原点的坐标为______,第一象限(+,+),第二象限(-,+),第三象限(-,-), 第四象限(+,-),任何一个在x轴上的点的纵坐标都为0,记作______; 任何一个在y轴上的点的横坐标都为0,记作______.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系xOy中有一个,其中点.(1)若与关于x轴对称,直接写出三个顶点的坐标;(2)作关于直线m的对称图形,并写出和的坐标.2、如图,在平面直角坐标内,点A的坐标为(-4,0),点C与点A关于y轴对称.(1)请在图中标出点A和点C;(2)△ABC的面积是 ;(3)在y轴上有一点D,且S△ACD=S△ABC,则点D的坐标为 .3、已知点,解答下列各题.(1)点P在x轴上,求出点P的坐标;(2)点Q的坐标为=,直线轴;求出点P的坐标;(3)若点P在第二象限,且它到x轴、y轴的距离相等,求的值.4、如图,在△ABC中,AC=2,AB=4,BC=6,点P为边BC上的一个动点(不与点B、C重合),点P关于直线AB的对称点为点Q,联结PQ、CQ,PQ与边AB交于点D.(1)求∠B的度数;(2)联结BQ,当∠BQC=90°时,求CQ的长;(3)设BP=x,CQ=y,求y关于x的函数解析式,并写出函数的定义域.5、如图,在平面直角坐标系中,的三个顶点都在格点上,点的坐标为,请回答下列问题.(1)画出关于x轴对称的,并写出点的坐标(___,___)(2)点P是x轴上一点,当的长最小时,点P坐标为______;(3)点M是直线BC上一点,则AM的最小值为______. -参考答案-一、单选题1、D【解析】【分析】根据确定位置的方法逐一判处即可.【详解】解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;B、中山公园与火车站之间,没能确定准确位置,故不符合题意;C、距离祖庙300米,有距离但没有方向,故不符合题意;D、金马影剧院大厅5排21号,确定了位置,故符合题意.故选:D【点睛】本题考查了位置的确定,熟练掌握常见的确定位置的方法:①用有序数对确定物体位置;②用方向和距离来确定物体的位置.2、D【解析】【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减解答即可得答案.【详解】∵将点A(﹣3,﹣2)向右平移5个单位长度,∴平移后的点的横坐标为-3+5=2,∴平移后的点的坐标为(2,-2),故选:D.【点睛】此题主要考查了坐标与图形的变化,熟练掌握横坐标,右移加,左移减;纵坐标,上移加,下移减的变化规律是解题关键.3、B【解析】【分析】设内任一点A(a,b)在第三象限内,可得a<0,b<0,关于x轴对称后的点B(-a,b),则﹣a>0,b<0,然后判定象限即可.【详解】解:∵设内任一点A(a,b)在第三象限内,∴a<0,b<0,∵点A关于x轴对称后的点B(a,-b),∴﹣b>0,∴点B(a,-b)所在的象限是第二象限,即在第二象限.故选:B.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.4、B【解析】【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,−y),进而求出即可.【详解】解:点P(−3,2)关于x轴的对称点的坐标为:(−3,−2).故选:B.【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.5、D【解析】【分析】先判断出点的横纵坐标的符号,进而判断点所在的象限.【详解】解:∵点的横坐标3>0,纵坐标-4<0,∴点P(3,-4)在第四象限.故选:D.【点睛】本题考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6、D【解析】【分析】根据第二象限内的点的横坐标为负,纵坐标为正判断即可.【详解】解:∵第二象限内的点的横坐标为负,纵坐标为正,∴在第二象限,故选:D.【点睛】本题考查了象限内点的坐标的特征,解题关键是熟记第二象限内点的横坐标为负,纵坐标为正.7、A【解析】【分析】求出点P平移后的坐标,继而可判断点P的位置.【详解】解:点P(-2,1)向右平移3个单位后的坐标为(1,1),点(1,1)在第一象限.故选:A.【点睛】本题考查了坐标与图形变化-平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.8、D【解析】【分析】第四象限中横坐标为正,纵坐标为负,到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,进而可表示出点坐标.【详解】解:由题意知点的横坐标为2,纵坐标为∴点的坐标为故选D.【点睛】本题考查了直角坐标系中的点坐标.解题的关键在于确定横、纵坐标的值.9、B【解析】【分析】根据题意可知“坐标的第一个数表示排,第二个数表示座”,然后用坐标表示出小嘉的位置即可.【详解】解:∵用表示5排7座∴坐标的第一个数表示排,第二个数表示座∴小嘉坐在7排8座可表示出(7,8).故选B.【点睛】本题主要考查了坐标的应用,根据题意得知“坐标的第一个数表示排,第二个数表示座”是解得本题的关键.10、D【解析】【分析】根据点A到y轴的距离是3,得到点A横坐标为-3,根据角的平分线的性质定理,得到点A到x轴的距离为2即点A的纵坐标为2,根据x轴对称的特点确定坐标.【详解】∵点A到y轴的距离是3,∴点A横坐标为-3,过点A作AE⊥OD,垂足为E,∵∠DAO=∠CAO,AC⊥OB,AC=2,∴AE=2,∴点A的纵坐标为2,∴点A的坐标为(-3,2),∴点A关于x轴对称的点的坐标为(-3,-2),故选D.【点睛】本题考查了角的平分线的性质,点到直线的距离,点的轴对称坐标,正确确定点的坐标,熟练掌握对称点坐标的特点是解题的关键.二、填空题1、【解析】【分析】根据旋转找出规律后再确定坐标.【详解】∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,∴每6次翻转为一个循环组循环,∵,∴经过2021次翻转为第337循环组的第5次翻转,点B在开始时点C的位置,∵,∴,∴翻转前进的距离为:,如图,过点B作BG⊥x于G,则∠BAG=60°,∴,,∴,∴点B的坐标为.故答案为:.【点睛】题考查旋转的性质与正多边形,由题意找出规律是解题的关键.2、【解析】【分析】根据纵坐标的绝对值就是点到x轴的距离即可求得的值.【详解】因为点到轴的距离是3,所以,解得.故答案为:.【点睛】本题考查了坐标与图形的性质,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离,掌握坐标的意义是解题的关键.3、(2,-2)【解析】【分析】利用点平移的坐标规律,把A点的横坐标加4,纵坐标减3即可得到点A′的坐标.【详解】解:将点A(-2,1)向右平移4个单位长度,再向下平移3个单位长度得到点A',则点A′的坐标是(-2+4,1-3),即A′(2,-2).故答案为:(2,-2).【点睛】此题主要考查坐标与图形变化-平移,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.4、 (-4,-3) (-4,3) 5【解析】【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数;由勾股定理求得两点间的距离.【详解】解:点A(4,-3)关于y轴的对称点的坐标是(-4,-3),关于原点对称的点的坐标是(-4,3),到原点的距离是:.故答案是:(-4,-3);(-4,3);5.【点睛】此题主要考查了关于原点对称点的性质,关于坐标轴对称的点的性质,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.5、 (0,0) (x,0) (0,y)【解析】略三、解答题1、(1),,;(2)作图见解析;,.【解析】【分析】(1)根据关于x轴对称横坐标不变,纵坐标互为相反数即可解决问题;(2)作出A,B,C的对应点A2,B2,C2即可;【详解】解:(1)∵三个顶点坐标分别为:,,,∴三个顶点坐标分别为:,,.(2)如图所示:、的坐标分别为:,.【点睛】本题考查作图-轴对称变换,解题的关键是解题意,灵活运用所学知识解决问题,属于中考常考题型.2、(1)作图见解析;(2)16;(3)(0,4)或(0,-4).【解析】【分析】(1)如图所示,由点C与点A关于y轴对称可知C坐标为(4,0),描点画图即可.(2)得出△ABC的底和高再由三角形面积公式计算即可.(3)S△ACD=S△ABC为同底不同高,故由(2)问知,再由点D在y轴上知D点坐标为(0,4)或(0,-4).【详解】解:(1)如图所示,点A为(-4,0),∵点C与点A关于y轴对称∴点C坐标为(4,0)(2)由×底×高有(3)∵S△ACD=S△ABC,AC=AC∴即D点的纵坐标为4或-4又∵D点在y轴上故D点坐标为(0,4)或(0,-4).【点睛】本题考查了坐标轴中的点坐标问题、轴对称问题、求三角形面积,解题的关键是要运用数形结合的思想.3、 (1);(2);(3)【解析】【分析】(1)利用x轴上P点的纵坐标为0求解即可得;(2)利用平行于y轴的直线上的点的横坐标相等列方程求解即可;(3)在第二象限,且到x轴、y轴的距离相等的点的横纵坐标互为相反数,再利用相反数的性质列方程求解可得,将其代入代数式求解即可.(1)解:∵点P在x轴上,∴P点的纵坐标为0,∴,解得:,∴,∴.(2)解:∵直线轴,∴,解得:,∴,∴.(3)解:∵点P在第二象限,且它到x轴、y轴的距离相等,∴.解得:.∴,∴的值为2020.【点睛】本题主要考查平面直角坐标系内点的坐标特点.分别考查了坐标轴上点的坐标特点、平行于坐标轴的直线上点坐标的特点、到坐标轴距离相等的点的坐标特点,理解题意,熟练掌握坐标系中不同条件下的坐标特点是解题关键.4、 (1)30°(2)(3)y=(0<x<6)【解析】【分析】(1)由勾股定理的逆定理可得出,由直角三角形的性质可得出答案;(2)求出,由直角三角形的性质得出.由勾股定理可得出答案;(3)过点作于点,证明为等边三角形,由勾定理得出,则可得出答案.(1)解:,,,,,,,,;(2)解:点关于直线的对称点为点,垂直平分,,,,,,,.;(3)解:过点作于点,,,为等边三角形,,,,,,,,,关于的函数解析式为.【点睛】本题是三角形综合题,考查了直角三角形的性质,等边三角形的判定与性质,勾股定理,轴对称的性质,解题的关键是熟练掌握勾股定理.5、(1)5,-3;(2)(,0);(3)【解析】【分析】(1)利用关于x轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)连接BC1交x轴于点P,利用两点之间线段最短可判断P点满足条件,利用待定系数法求得直线BC1的解析式,即可求解;(3)利用割补法求得△ABC的面积,利用两点之间的距离公式求得BC的长,再利用面积法即可求解.【详解】解:(1)如图,△A1B1C1为所作,点C1的坐标为(5,-3);故答案为:5,-3;(2)如图,点P为所作.设直线BC1的解析式为y=kx+b,∵点C1的坐标为(5,-3),点B的坐标为(1,2),∴,解得:,∴直线BC1的解析式为y=x+,当y=0时,x=,∴点P的坐标为(,0);故答案为:(,0);(3)根据垂线段最短,当AM垂直BC时,垂线段AM取得最小值,△ABC的面积为2×4-×2×1-×4×1-×3×1=;BC=,∵××AM=,∴AM=.故答案为:.【点睛】本题考查了作图-轴对称变换:几何图形都可看作是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数.
相关试卷
这是一份八年级下册第十九章 平面直角坐标系综合与测试练习,共26页。试卷主要包含了如果点P,在平面直角坐标系中,点在等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试复习练习题,共26页。试卷主要包含了点在第四象限,则点在第几象限,已知点A,在平面直角坐标系中,点P等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课后复习题,共25页。试卷主要包含了12,则第三边长为13;等内容,欢迎下载使用。