数学冀教版第二十章 函数综合与测试一课一练
展开这是一份数学冀教版第二十章 函数综合与测试一课一练,共21页。试卷主要包含了下图中表示y是x函数的图象是,如图所示的图象,在下列图象中,是的函数的是等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数章节练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,正方形ABCD的边长为4,P为正方形边上一动点,它沿A→D→C→B→A的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映变量y与变量x的关系图象的是( )
A. B.
C. D.
2、在函数中,自变量x的取值范围是( )
A. B. C. D.
3、在某火车站托运物品时,不超过3kg的物品需付1.5元,以后每增加1kg(不足1kg按1kg计)需增加托运费0.5元,则下列图象能表示出托运费y与物品重量x之间的函数关系式的是( )
A. B.
C. D.
4、下列关系中,一定能称是x的函数的是( )
A.y2=4x B.|y|=x-2 C.y=|x|-3 D.y4=64x
5、EF是BC的垂直平分线,交BC于点D,点A是直线EF上一动点,它从点D出发沿射线DE方向运动,当减少时,增加,则y与x的函数表达式是( )
A. B. C. D.
6、下图中表示y是x函数的图象是( )
A. B.
C. D.
7、如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在第4小时到6小时的速度是25千米/时;④汽车出发后9小时返回原地.其中正确的说法共有( )
A.1个 B.2个 C.3个 D.4个
8、在下列图象中,是的函数的是( )
A. B.
C. D.
9、如图所示,下列各曲线中表示是的函数的有()
A.1个 B.2个 C.3个 D.4个
10、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )
A.①②③ B.①②④ C.③④ D.①③④
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图1,正方形的边上有一定点,连接.动点从正方形的顶点出发,沿以1cm/s的速度匀速运动到终点.图2是点运动时,的面积y(cm2)随时间x(s)变化的全过程图象,则的长度为________cm.
2、定义:用_______来表示函数关系的方法叫做列表法.
列表法一目了然,使用起来比较方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律.
3、函数的定义域是 _____.
4、山西近期遭遇严重洪涝灾害,万余间房屋倒塌.下图是汾河沿线某个村庄的受灾情况和蓝天救援队的排涝现场.某地需排水约,打开排水泵开始排水,排走的水量与排水时间的关系如下表所示.排水分钟后,剩下水量为________.
排水时间/分钟 | … | ||||
剩下的水量/ | … |
5、函数的图象不经过横坐标是_____的点.
三、解答题(5小题,每小题10分,共计50分)
1、长方形的一边长是,其邻边长为,周长是,面积为.
(1)写出和之间的关系式
(2)写出和之间的关系式
(3)当时,等于多少等于多少
(4)当增加时,增加多少增加多少
2、如图所示,小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家.如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.
根据图象回答下列问题:
(1)食堂离小明家多远?小明从家到食堂用了多少时间?
(2)小明吃早餐用了多少时间?
(3)食堂离图书馆多远?小明从食堂到图书馆用了多少时间?
(4)小明读报用了多少时间?
(5)图书馆离小明家多远?小明从图书馆回家的平均速度是多少?
3、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6立方米时,水费按a元/立方米收费;每户每月用水量超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分按c元/立方米收费,该市某用户今年3、4月份的用水量和水费如下表所示:
月份 | 用水量x(m3) | 收费y(元) |
3 | 5 | 7.5 |
4 | 9 | 27 |
(1)求a、c的值;
(2)写出每月用水量x不超过6立方米和超过6立方米时,水费y与用水量x之间的关系式;
(3)已知某户5月份的用水量为8立方米,求该用户5月份的水费.
4、小明某天上午时骑自行车离开家,时回到家,他有意描绘了离家的距离与时间的变化情况(如图所示).
(1)图象表示了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)时和时,他分别离家多远?
(3)他到达离家最远的地方是什么时间?离家多远?
(4)时到时他行驶了多少千米?
(5)他可能在哪段时间内休息,并吃午餐?
(6)他由离家最远的地方返回时的平均速度是多少?
5、图(a)是某公共汽车线路收支差额(票价总收入减去运营成本)与乘客量的函数图象;目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.
乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,从而实现扭亏.公交公司认为:运营成本难以下降,公司已尽力,提高票价才能担亏根据这两种意见,可以把图(a)分别改画成图(b)和图(c).
(1)说明图(a)中点和点的实际意义.
(2)你认为图(b)和图(c)两个图象中,反映乘客意见的是______,反映公交公司意见的是______.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据动点P的正方形各边上的运动状态分类讨论△APD的面积即可;
【详解】
由点P运动状态可知,当0≤x≤4时,点P在AD上运动,△APD的面积为0;
当4≤x≤8时,点P在DC上运动,△APD的面积y=×4×(x﹣4)=2x﹣8;
当8≤x≤12时,点P在CB上运动,△APD的面积y=8;
当12≤x≤16时,点P在BA上运动,△APD的面积y=×4×(16﹣x)=﹣2x+32;
故选B.
【点睛】
本题主要考查了正方形的性质,动点问题与函数图象结合,准确分析计算是解题的关键.
2、C
【解析】
【分析】
由题意知,求解即可.
【详解】
解:由题意知
∴
故选C.
【点睛】
本题考查了分式有意义的条件与解一元一次不等式.解题的关键在于确定分式有意义的条件.
3、D
【解析】
【分析】
根据题意分析出 托运费y与物品重量x之间的函数关系,画出图像即可.
【详解】
解:由题意可得,
当时,,
∵物品重量每增加1kg(不足1kg按1kg计)需增加托运费0.5元,
∴托运费y与物品重量x之间的函数图像为:
故选:D.
【点睛】
此题考查了函数的图像,解题的关键是根据题意正确分析出托运费y与物品重量x之间的函数关系.
4、C
【解析】
【分析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数.
【详解】
解:根据函数概念可得:在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应可得C中y是x的函数,
故选:C.
【点睛】
此题主要考查了函数的概念,关键是掌握函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
5、B
【解析】
【分析】
根据垂直平分线的性质可得,,根据题意列出函数关系式即可
【详解】
EF是BC的垂直平分线,
是的角平分线
设,即
当减少时,则,增加,则
故选B
【点睛】
本题考查了垂直平分线的性质,三角形内角和定理,列函数关系式,掌握垂直平分线的性质,等腰三角形三线合一是解题的关键.
6、C
【解析】
【分析】
函数就是在一个变化过程中有两个变量x,y,当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.注意“y有唯一的值与其对应”对图象的影响.
【详解】
解:根据函数的定义,表示y是x函数的图象是C.
故选:C.
【点睛】
理解函数的定义,是解决本题的关键.
7、C
【解析】
【分析】
根据函数图像上的特殊点以及函数图像自身的实际意义进行判断即可.
【详解】
解:由图象可知,汽车走到距离出发点140千米的地方后又返回出发点,所以汽车共行驶了280千米,故①错误;
从3时开始到4时结束,时间在增多,而路程没有变化,说明此时在停留,停留了4-3=1小时,故②正确;
汽车在第4小时到6小时的速度是=千米/时,故③正确;
由图象可知,当t=9时,s=0,汽车出发后9小时返回原地,故④正确.
∴正确的说法有:②③④,共有3个.
故选:C.
【点睛】
此题考查了函数图像问题,解题的关键是正确分析题目中信息进行求解.
8、D
【解析】
【分析】
设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.根据函数的意义即可求出答案.
【详解】
解:A、对于x的每一个确定的值,y可能会有两个值与其对应,不符合函数的定义,故选项A不符合题意;
B、对于x的每一个确定的值,y可能会有多个值与其对应,不符合函数的定义,故选项B不符合题意;
C、对于x的每一个确定的值,y可能会有两个值与其对应,不符合函数的定义,故选项C不符合题意;
D、对于x的每一个确定的值,y有唯一的值与之对应,符合函数的定义,故选项D符合题意.
故选:D.
【点睛】
本题主要考查了函数的定义.解题的关键是掌握函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.
9、C
【解析】
【分析】
由题意依据函数的定义对各个函数图形进行分析判断即可得出答案.
【详解】
解:由对于的每一个确定的值,都有唯一确定的值与其对应可知,
①、②、③表示是的函数,④不构成函数关系,共有3个.
故选:C.
【点睛】
本题考查函数的识别,注意掌握在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数.
10、D
【解析】
【分析】
根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.
【详解】
解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;
火车的长度是150米,故②错误;
整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;
隧道长是:45×30-150=1200(米),故④正确.
故选:D.
【点睛】
本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.
二、填空题
1、3
【解析】
【分析】
当点P在点D时,设正方形的边长为acm,然后根据函数图象可得a的值,当点P在点C时,进而根据函数图象及三角形面积公式可进行求解.
【详解】
解:由题意得:
当点P在点D时,设正方形的边长为acm,则有,解得:;
当点P在点C时,则有,解得:;
故答案为3.
【点睛】
本题主要考查动点函数图象问题,解决问题的关键是弄清楚不同时间段,图象与图形的对应关系.
2、表格
【解析】
略
3、x≠0
【解析】
【分析】
由题意直接根据分式有意义的条件即分式的分母不能为0进行分析计算即可.
【详解】
解:函数的定义域是:x≠0.
故答案为:x≠0.
【点睛】
本题考查求函数自变量的范围,一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
4、26
【解析】
【分析】
根据题意可得剩下的水量y=50−2t,故可求出放水12分钟后的水量.
【详解】
解:设剩下的水量为y,时间为t,
则可得y=50−2t,
∴放水12分钟后,水池中剩下的水量为:y=50−2×12=26m3,
故答案为:26.
【点睛】
本题考查了函数关系式的知识,解答本题的关键是根据题意确定函数关系式.
5、-3
【解析】
【分析】
根据分式有意义的条件:分母不为0解答即可.
【详解】
解:函数要有意义,需要,所以不经过横坐标是的点.
故答案为:-3.
【点睛】
本题主要考查了函数的自变量取值范围,掌握代数式有意义时字母的取值范围是解题关键.
三、解答题
1、(1);(2);(3),;(4)当增加时,增加,增加
【解析】
【分析】
(1)根据长方形周长公式进行求解即可;
(2)根据长方形面积公式进行求解即可;
(3)根据(2)求得的结果把代入先求出x的值,即可求值y的值;
(4)把代入(1)(2)中求得的y以及S关于x的表达式中求出变化后的周长和面积,由此求解即可.
【详解】
解:(1)由长方形的周长公式,得.
(2)由长方形的面积公式,得.
(3)∵,时,
∴,
∴.
(4)当增加时,,,
∵,
∴增加,增加.
【点睛】
本题主要考查了列代数式,整式的加减计算,代数式求值,解一元一次方程,解题的关键在于能够根据题意列出关于周长和面积的代数式.
2、(1),;(2);(3),;(4);(5),
【解析】
【分析】
小明离家的距离y是时间x的函数,由图象中有两段平行于x轴的线段可知,小明离家后有两段时间先后停留在食堂与图书馆里,由此结合图形分析即可解答.
【详解】
解:(1)由纵坐标看出,食堂离小明家;由横坐标看出,小明从家到食堂用了.
(2)由横坐标看出,,小明吃早餐用了.
(3)由纵坐标看出,,食堂离图书馆;
由横坐标看出,,小明从食堂到图书馆用了.
(4)由横坐标看出,,小明读报用了.
(5)由纵坐标看出,图书馆离小明家;
由横坐标看出,,小明从图书馆回家用了,
由此算出平均速度是.
【点睛】
本题考查的是函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合题意正确计算是解题的关键.
3、(1)a=1.5,c=6;(2)时,,时,;(3)该用户5月份的水费为21元.
【解析】
【分析】
(1)根据题意列出方程组,解出即可求解;
(2)分时和当时,列出函数关系式,即可求解;
(3)根据 ,将 代入,即可求解.
【详解】
解:(1)根据题意得:
,
解得: ;
(2)当时,,
当时,;
(3)∵ ,
∴该用户5月份的水费(元).
【点睛】
本题主要考查了二元一次方程组的应用,列函数关系式,求函数值,明确题意,准确得到等量关系是解题的关键.
4、(1)时间、离家的距离,自变量是时间,因变量是离家的距离;(2)15千米、30千米;(3)12:00,30千米;(4)15千米,(5)12:00-13:00;(6)15千米/小时.
【解析】
【分析】
(1)根据图象的x轴和y轴即可确定表示了哪两个变量的关系;
(2)由函数图像可以看出10时的时候他离家的距离是15千米,12时的时候他离家30千米;
(3)首先根据图象找到离家最远的距离,由此即可确定他到达离家最远的地方是什么时间,离家多远;
(4)根据图象首先找到时间为10时和12时离家的距离,然后作差即可;
(5)如果休息,那么距离没有增加,由此就可以确定在哪段时间内休息,并吃午餐;
(6)根据返回时所走路程和使用时间即可求出返回时的平均速度.
【详解】
解:(1)图像表示了离家的距离与时间这两个变量之间的关系.其中时间是自变量,离家的距离是因变量;
(2)由函数图像可以看出10时的时候他离家的距离是15千米,13时的时候他离家30千米;
(3)由图象看出他到达离家最远的地方是在12-13时,离家30千米;
(4)由图象看出10时到12时他行驶了30-15=15千米;
(5)由图象看出12:00~13:00时距离没变且时间较长,得他可能在12时到13时间内休息,并吃午餐;
(6)由图象看出回家时用了2小时,路程是30千米,所以回家的平均速度是30÷2=15(千米/时).
【点睛】
此题考查了函数的图象,解题关键在于看懂图中数据表示的实际意义.
5、(1)点的实际意义是运营前的前期投入为1万元,点的实际意义是当乘客量达到1.5万人次时收支平衡;(2)反映乘客意见的是图(c),反映公交公司意见的是图(b).
【解析】
【分析】
(1)读题看图两结合,从中获取信息做出判断.点的实际意义是运营前的前期投入为1万元,点的实际意义是当乘客量达到1.5万人次时收支平衡;
(2)根据题意知图象反映了收支差额y与乘客量x的变化情况,即直线的斜率说明票价问题;当x=0的点说明公司的成本情况,再结合图象进行说明.
【详解】
解:(1)点的实际意义是运营前的前期投入为1万元,点的实际意义是当乘客量达到1.5万人次时收支平衡;
(2)反映乘客意见的是图(c),反映公交公司意见的是图(b).
由图(b)看出,当乘客量为0时,支出不变,
但是直线的倾斜角变大,即相同的乘客量时收入变大,
即票价提高了,即说明了此建议是提高票价而保持成本不变,
由图(c)知,两直线平行即票价不变,
直线向上平移说明当乘客量为0时,收入是0但是支出的变少了,
即说明了此建议是降低成本而保持票价不变;
综上可得图(b)的建议是提高票价,图(c)的建议是降低成本,故反映乘客意见的是图(c),反映公交公司意见的是图(b).
【点睛】
本题考查了用函数图象说明两个量之间的变化情况,主要根据实际意义进行判断,解题关键是掌握读图能力和数形结合思想.
相关试卷
这是一份数学八年级下册第二十章 函数综合与测试课时训练,共24页。
这是一份2020-2021学年第二十章 函数综合与测试练习题,共24页。试卷主要包含了小斌家等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课后作业题,共24页。试卷主要包含了下列图像中表示是的函数的有几个,在函数中,自变量的取值范围是等内容,欢迎下载使用。