初中数学冀教版八年级下册第二十章 函数综合与测试课后作业题
展开这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课后作业题,共24页。试卷主要包含了下列图像中表示是的函数的有几个,在函数中,自变量的取值范围是等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数章节训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、笔直的海岸线上依次有A,B,C三个港口,甲船从A港口出发,沿海岸线匀速驶向C港口,1小时后乙船从B港口出发,沿海岸线匀速驶向A港口,两船同时到达目的地,甲船的速度是乙船的1.25倍,甲、乙两船与B港口的距离y(km)与甲船行驶时间x(h)之间的函数关系如图所示给出下列说法:①A,B港口相距400km;②B,C港口相距300km;③甲船的速度为100km/h;④乙船出发4h时,两船相距220km,其中正确的个数是( )
A.1 B.2 C.3 D.4
2、一辆汽车行驶的路程与行驶时间的关系如图所示,下列说法正确的是( )
A.前3h中汽车的速度越来越快 B.3h后汽车静止不动
C.3h后汽车以相同的速度行驶 D.前3h汽车以相同速度行驶
3、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )
A.①②③ B.①②④ C.③④ D.①③④
4、下列图像中表示是的函数的有几个( )
A.1个 B.2个 C.3个 D.4个
5、下列图象中,表示y是x的函数的个数有( )
A.1个 B.2个 C.3个 D.4个
6、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程(米),(米)与运动时间(分)之间的函数关系如图所示,下列结论中错误的是( )
A.两人前行过程中的速度为180米/分 B.的值是15,的值是2700
C.爸爸返回时的速度为90米/分 D.运动18分钟或31分钟时,两人相距810米
7、在函数中,自变量的取值范围是( )
A. B. C. D.
8、已知一个等腰三角形的腰长为x,底边长为y,周长是10,则底边y关于腰长x之间的函数关系式及定义域为( )
A.y=10﹣2x(5<x<10) B.y=10﹣2x(2.5<x<5)
C.y=10﹣2x(0<x<5) D.y=10﹣2x(0<x<10)
9、甲、乙两辆摩托车分别从A、B两地出发相向而行,图中、分别表示两辆摩托车与A地的距离与行驶时间之间的函数关系,则下列说法:
①A、B两地相距;②甲车比乙车行完全程多用了0.1小时;③甲车的速度比乙车慢;④两车出发后,经过0.3小时,两车相遇.其中正确的有( )
A.4个 B.3个 C.2个 D.1个
10、甲、乙两车分别从相距280km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,下列说法:①乙车的速度是40千米/时;②甲车从C返回A的速度为70千米/时;③t=3;④当两车相距35千米时,乙车行驶的时间是2小时或6小时,其中正确的有( )
A.1个 B.2个 C.3个 D.4个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知f(x)=,那么f()=___.
2、国庆期间,小艾同学和小一同学相约在某小区门口一同出发,各自骑自行车前往距离2000米的欢乐谷游玩,出发后不久,小艾突感身体不适,于是在路旁休息了4分钟后再次出发,以1.2倍之前的速度冲向终点,小一同学则在到达终点之后立即原路原速返回迎接小艾同学,最终陪同小艾同学骑完了全程.在整个骑行过程中,变速前后小艾同学、小一同学两人均保持匀速,且途中掉头时间忽略不计,小艾同学、小一同学两人相距的路程(米)与出发的时间(秒)之间的关系如图所示.则第二次相遇时,小艾、小一两位同学距离终点__________米.
3、学校“青春礼”活动当天,小明和妈妈以不同的速度匀速从家里前往学校,小明害怕集合迟到先出发2分钟,随后妈妈出发,妈妈出发几分钟后,两人相遇,相遇后两人以小明的速度匀速前进,行进2分钟后,通过与妈妈交谈,小明发现忘记穿校服,于是小明立即掉头以原速度的2倍跑回家中,妈妈速度减半,继续匀速赶往学校,小明到家后,花了3分钟换校服,换好校服后,小明再次从家里出发,并以返回时的速度跑回学校,最后小明和妈妈同时到达学校.小明和妈妈之间的距离y与小明出发时间x之间的关系如图所示.则小明家与学校之间的距离是_____米.
4、等腰三角形中,底角的度数用x表示,顶角的度数用y表示,写出y关于x的函数解析式 ___,函数的定义域 ___.
5、函数y=中,自变量x的取值范围是____________
三、解答题(5小题,每小题10分,共计50分)
1、小明和小华是姐弟俩,某日早晨,小明7:40先从家出发去学校,走了一段后,在途中广场看到志愿者们在向过往行人讲解卫生防疫常识,小明想起自己在学校学到的卫生防疫常识,于是停下来加入了志愿者队伍,后来发现上课时间快到了,就开始跑步上学,恰好在8:00赶到学校;小华离家后沿着与小明同一条道路前往学校,速度一直保持不变,也恰好在8:00赶到学校,他们从家到学校已走的路程(米)和所用时间(分钟)的关系图如图所示,请结合图中信息解答下列问题:
(1)小明家和学校的距离是 米;小明在广场向行人讲解卫生防疫常识所用的时间是 分钟;
(2)分别求小华的速度和小明从广场跑去学校的速度;
(3)求小华在广场看到小明时是几点几分?
(4)如果小明在广场进行卫生防疫常识讲解后,继续以之前的速度去往学校,假设讲解1次卫生防疫常识需要1分钟,在保证不迟到(不超过8:00)的情况下,通过计算求小明最多可以讲解几次?(结果保留整数)
2、汽车在发动后的前10秒内以匀加速a=0.8m/s2行驶,这10s内,经过t(s)汽车行驶的路程为s=at2.
(1)求t=2.5s和3.5s时,汽车所行驶的路程.
(2)汽车在发动后行驶10m,15m所需的时间各为多少? (精确到0.1)
3、小亮想了解一根弹簧的长度是如何随所挂物体质量的变化而变化的,他把这根弹簧的上端固定,在其下端悬挂物体,下面是小亮测得的弹簧的长度y与所挂物体质量x的几组对应值:
所挂物体质量x/kg | 0 | 1 | 2 | 3 | 4 | 5 |
弹簧长度y/cm | 18 | 22 | 26 | 30 | 34 | 38 |
(1)上表所反映的变化过程中的两个变量,______是自变量,______是因变量;(请用文字语言描述)
(2)请直接写出y与x的关系式______;
(3)当弹簧长度为50cm(在弹簧承受范围内)时,求所挂重物的质量.(写出求解过程)
4、请根据函数相关知识,对函数y=2|x﹣3|﹣1的图象与性质进行探究,并解决相关问题.
①列表;②描点;③连线.
x | … | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … |
y | … | 5 | m | 1 | ﹣1 | 1 | 3 | n | 7 | … |
(1)函数自变量x的取值范围是 .
(2)表格中:m= ,n= .
(3)在直角坐标系中画出该函数图象.
(4)观察图象:
①当x 时,y随x的增大而减小;
②若关于x的方程2|x﹣3|﹣1=a有两个不同的实数根,则a的取值范围是 .
5、初二年级小王同学坚持环保理念,每天骑自行车上学,学校离家3000米.某天,小王上学途中因自行车发生故障,修车耽误了一段时间后继续骑行,还是按时赶到了学校,如图描述的是他离家的距离S和离家的时间t之间的函数图像,根据图像解决下列问题:
(1)修车时间为______分钟:
(2)到达学校时共用时间______分钟;
(3)小王从离家时到自行车发生故障时,离家的距离S和离家的时间t之间的函数关系式为______定义域为______;
(4)自行车故障排除后他的平均速度是每分钟______米.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据图象可知A、B港口相距400km,从而可以判断①;根据甲船从A港口出发,沿海岸线匀速驶向C港,1小时后乙船从B港口出发,沿海岸线匀速驶向A港,两船同时到达目的地.甲船的速度是乙船的1.25倍,可以计算出B、C港口间的距离,从而可以判断②;根据图象可知甲船4个小时行驶了400km,可以求得甲船的速度,从而可以判断③;根据题意和图象可以计算出乙出发4h时两船相距的距离,从而可以判断④.
【详解】
解:由题意和图象可知, A、B港口相距400km,故①正确;
∵甲船的速度是乙船的1.25倍,
∴乙船的速度为:100÷1.25=80(km/h),
∵乙船的速度为80km/h,
∴400÷80=(400+)÷100-1,
解得:=200km, 故②错误;
∵甲船4个小时行驶了400km,
∴甲船的速度为:400÷4=100(km/h), 故③正确;
乙出发4h时两船相距的距离是:4×80+(4+1-4)×100=420(km), 故④错误.
故选B
【点睛】
本题考查从函数图象中获取信息,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.
2、B
【解析】
【分析】
根据图象可直接进行排除选项.
【详解】
解:由图象可知前3小时汽车行驶的路程是曲线,并且路程是缓慢增加,故汽车的速度是越来越小,
在3小时到5小时之间,汽车的路程没有发生改变,故可知汽车在此期间是静止不动的,
由上述可知,只有B选项正确;
故选B.
【点睛】
本题主要考查函数图象,解题的关键是根据函数图象得到相关信息.
3、D
【解析】
【分析】
根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.
【详解】
解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;
火车的长度是150米,故②错误;
整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;
隧道长是:45×30-150=1200(米),故④正确.
故选:D.
【点睛】
本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.
4、A
【解析】
【分析】
函数就是在一个变化过程中有两个变量x,y,当给定一个x的值时,y由唯一的值与之对应,则称y是x的函数,x是自变量,注意“y有唯一性”是判断函数的关键.
【详解】
解:根据函数的定义,每给定自变量x一个值都有唯一的函数值y与之相对应,
故第2个图符合题意,其它均不符合,
故选:A.
【点睛】
本题考查函数图象的识别,判断方法:做垂直x轴的直线在左右平移的过程中,与函数图象只会有一个交点.
5、B
【解析】
【分析】
根据函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量,据此判断即可.
【详解】
解:属于函数的有
故y是x的函数的个数有2个,
故选:B.
【点睛】
本题考查了函数的定义,熟记定义是本题的关键.
6、D
【解析】
【分析】
两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m=15,由此即可计算出n的值和爸爸返回的速度,即可判断B、C;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案.
【详解】
解:∵3600÷20=180米/分,
∴两人同行过程中的速度为180米/分,故A选项不符合题意;
∵东东在爸爸返回5分钟后返回即第20分钟返回
∴m=20-5=15,
∴n=180×15=2700,故B选项不符合题意;
∴爸爸返回的速度=2700÷(45-15)=90米/分,故C选项不符合题意;
∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米,
∴运动18分钟时两人相距3240-2430=810米;
∵返程过程中东东45-20=25分钟走了3600米,
∴东东返程速度=3600÷25=144米/分,
∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米,
∴运动31分钟两人相距756米,故D选项符合题意;
故选D.
【点睛】
本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.
7、C
【解析】
【分析】
由二次根式有意义的条件,可得 解不等式即可得到答案.
【详解】
解:∵函数中,
则
∴;
故选:C.
【点睛】
本题考查了函数自变量的取值范围,二次根式有意义的条件,解题的关键是掌握被开方数大于或等于0.
8、B
【解析】
【分析】
根据等腰三角形的定义即三角形的周长公式列出底边y关于腰长x之间的函数关系式,根据三角形的三边关系以及底边大于0,列出不等式组,进而求得定义域.
【详解】
一个等腰三角形的腰长为x,底边长为y,周长是10,
即
即
解得
即
解得
底边y关于腰长x之间的函数关系式为
故选B
【点睛】
本题考查了等腰三角形的定义,三角形的三边关系,函数解析式,掌握以上知识是解题的关键.
9、B
【解析】
【分析】
根据从B到A共行驶的路程可判断①;求出乙车行驶时间,甲车行驶时间,根据减法求出时间差可判断②;根据时间与路程,求出甲乙两车的速度,根据减法求出速度差可判断③;设两相遇时间为th.甲车行驶40tkm,乙车行驶48tkm,根据甲乙共走全程列方程,求出时间t可判断④.
【详解】
解:乙从B地到A共行走24km,故①A、B两地相距正确;
乙摩托车从B到A地用0.5h,甲摩托车从A地到B地用0.6h,
∴0.6-0.5=0.1h,故②甲车比乙车行完全程多用了0.1小时正确;
甲摩托车行驶的速度为24÷0.6=40km/h,乙摩托车行驶的速度为24÷0.4=48km/h,
∴48-40=8km/h,
故③甲车的速度比乙车慢正确;
设两车相遇时间为th.甲车行驶40tkm,乙车行驶48tkm,
∴40t+48t=24,
解得h,
故④两车出发后,经过0.3小时,两车相遇不正确.
故选择B.
【点睛】
本题考查从行程图像获取信息和处理信息,看懂函数图像,列一元一次方程,时间差,速度差,掌握相关知识是解题关键.
10、B
【解析】
【分析】
由乙车比甲车先出发1小时,与出发地的距离为千米,可判断①,由 千米/时,可判断②,由小时,可得可判断③,利用检验的方法计算当乙车行驶的时间是2小时或6小时时,两车相距的路程可判断④,从而可得答案.
【详解】
解:由函数图象可得:乙车比甲车先出发1小时,与出发地的距离为千米,所以乙车速度为:35千米/时,故①不符合题意;
乙车行驶280千米需要的时间为:小时,
所以甲车返回的速度为:千米/时,故②符合题意;
由小时,所以 故③符合题意,
当乙车行驶2小时时,行驶的路程为:千米,
此时甲车行驶1小时,千米,
所以两车相距:千米,
当乙车行驶6小时时,行驶的路程为千米,距离A地70千米,
此时甲车行驶了4个小时,行驶的路程为千米,此时在返回A地的路上,
距离A地千米,所以两车相距千米,故④不符合题意;
综上:故选B
【点睛】
本题考查的是从函数图象中获取信息,理解点的坐标含义,特别是利用检验的方法判断④,可以化繁为简,都是解本题的关键.
二、填空题
1、####
2、204.
【解析】
【分析】
设小艾骑自行车速度为v1米/秒,小一骑自行车速度为v2米/秒,利用70秒相距70米,得出v1=v2+1,利用小一500秒到终点,求出v2,,再求出小一到终点时,小艾距终点的路程,利用两者相向而行510米所用时间即可
【详解】
解:∵70秒时,两人相距70米,然后小艾休息,小一追上,说明小艾速度快,
设小艾骑自行车速度为v1米/秒,小一骑自行车速度为v2米/秒,
∴70v1-70v2=70,
∴v1=v2+1,
小一欢骑自行车到乐谷,用500秒,小一的速度为2000÷500=4米/秒,
∴小艾的速度为5米/秒,
小艾在路旁休息了4分钟后再次出发,以1.2×5=6米/秒的速度冲向终点,
2000-70×5-[500-(70+4×60)]×6=2000-350-1140=510米,
当小一到终点时,小艾距终点510米,小一返回与小艾相遇时间为:510÷(4+6)=51秒,
此时距终点51×4=204米.
故答案为204.
【点睛】
本题考查利用函数图像获取信息,掌握图像的这点含义是解题关键.
3、1760
【解析】
【分析】
根据函数图象可知,小明出发2分钟后走了160米,据此可得小明原来的速度,进而得出小明回时的速度.
【详解】
解:小明离家2分钟走了160米,
∴小明初始速度为160÷2=80米/分;
小明返回家速度为80×2=160米/分,妈妈继续行进速度80÷2=40米/分;
小明在家换衣服3分钟时间,妈妈走了40×3=120米,
设小明换好衣服离开家到与妈妈同时到达学校的时间为t分,
则有160t=1200+120+40t,
∴t=11,
∴小明离家距离为11×160=1760米.
故答案为:1760米.
【点睛】
本题主要是考查了从函数图像获取信息,解题的关键是根据题意正确分析出函数图像中的数据.
4、
【解析】
【分析】
根据等腰三角形的性质可知两底角相等,根据三角形内角和定理即可列出函数解析式,根据角度底角和顶角都大于0,列出不等式组求得定义域.
【详解】
等腰三角形中,底角的度数用x表示,顶角的度数用y表示,
即
解得
故答案为:,.
【点睛】
本题考查了列函数解析式,一元一次不等式组的应用,等腰三角形的性质,三角形内角和定理,根据三角形内角和定理列出解析式是解题的关键.
5、
【解析】
【分析】
根据二次根式有意义的条件即可求得自变量x的取值范围
【详解】
解:
故答案为:
【点睛】
本题考查了函数解析式,二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.
三、解答题
1、(1)1280,6;(2)小华的速度为米/分钟,小明从广场跑去学校的速度为120米/分钟;(3)7:51;(4)在保证不迟到的情况下,小明最多可以讲解1次
【解析】
【分析】
(1)根据函数图象,找出小明家和学校的距离是1280米,计算出小明在广场向行人讲解卫生防疫常识所用的时间即可;
(2)根据速度=路程÷时间,分别求小华的速度和小明从广场跑去学校的速度;
(3)根据函数图象可得当小华离家路程,根据速度=路程÷时间,算出用的时间,加上出分时间,由此解答即可;
(4)根据函数图象可得,小明之前的速度,讲解时间,由此推断即可.
【详解】
(1)解:由图象可知,小明家和学校的距离是1280米;
小明在广场向行人讲解卫生防疫常识所用的时间是: (分钟);
故答案为:1280;6;
(2)解:小华的速度为:(米/分钟),
小明从广场跑去学校的速度为:(米/分钟);
(3)解:(分钟),(分钟),
答:小华在广场看到小明时是7:51;
(4)解:(分钟),
(分钟),
因为,
所以,在保证不迟到的情况下,小明最多可以讲解1次.
【点睛】
本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.
2、(1)2.5,4.9;(2)5,6.1
【解析】
【分析】
(1)根据公式,得函数解析式,根据自变量的值,得函数值.
(2)根据函数值,得相应的自变量的值.
【详解】
(1)∵s=at2,
∴s=×0.8t2=t2.
当t=2.5时,s=×2.52=2.5(m),
当t=3.5时,s=×3.52=4.9(m).
(2)当s=10时, t2=10,解得t=5(s),
当s=15时, t2=15,解得t≈6.1(s).
【点睛】
本题考查了函数值,利用了函数的自变量与函数值的对应关系.
3、(1)所挂物体质量,弹簧长度;(2)y=4x+18;(3)8kg
【解析】
【分析】
(1)因为表中的数据主要涉及到弹簧的长度和所挂物体的质量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;
(2)利用表格中数据的变化进而得出答案;
(3)由(2)中关系式,可求当弹簧长度为50cm(在弹簧承受范围内)时,所挂重物的质量.
【详解】
解:(1)上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;
故答案为:所挂物体质量,弹簧长度;
(2)由表格可得:当所挂物体重量为1千克时,弹簧长4厘米;当不挂重物时,弹簧长18厘米,
则y与x的关系式为:y=4x+18;
故答案为:y=4x+18;
(3)当弹簧长度为50cm(在弹簧承受范围内)时,
50=4x+18,
解得x=8,
答:所挂重物的质量为8kg.
【点睛】
本题考查了函数的表示方法,本题需仔细分析表中的数据,进而解决问题.明确变量及变量之间的关系是解好本题的关键.
4、(1)全体实数;(2)3,5;(3)见解析;(4)①≤3;②a>-1.
【解析】
【分析】
(1)由绝对值的定义即可确定x的取值范围;
(2)将x=1和x=6分别代入解析式即可求得m和n的值;
(3)根据表格已有数据、描点、连线即可得到函数图象;
(4)①根据函数图象即可解答;②根据函数图像得到函数的性质,再运用性质解答即可
【详解】
解:(1)由绝对值的定义可知,x-3可取全体实数,
∴x的取值范围是全体实数,
故填:全体实数;
{2)当x=1时,m=2×|1-3|-1=3;
当x=6时,n=2×|6-3|-1=5,
故填:3,5;
(3)根据表中数据,描点,连线如下图所示:
(4)①由图可知,当x≤3时,y随x的增大而减小,
故填≤3;
∵关于x的方程2|x-3|-1=a有两个不同的实数根,
∴函数y=2|x-3|-1与函数y=a的函数图象有两个不同的交点,
∴a>-1.
故填a>-1.
【点睛】
本题主要考查了一次函数图象上点的坐标、分段函数的图象,准确画出函数的图象并灵活运用函数图象得到函数的性质成为解答本题的关键.
5、(1)5分钟;(2)20分钟;(3);;(4)300.
【解析】
【分析】
(1)线段AB表示修车时段,时间为5分钟;
(2)根据C点横坐标为20,得出到达学校时共用时间;
(3)观察图象,获取有关信息:线段OA表示故障前行使情况:10分钟行使了1500米;
(4)根据线段BC表示修车后行使情况:5分钟行使了1500米,即可求出行驶速度.
【详解】
解:(1)线段AB表示修车时段,时间为5分钟;
故答案为:5;
(2)利用C点横坐标为20,得出从家到学校用时20分钟;
故答案为:20;
(3)由图象可知:小王从离家时到自行车发生故障时,10分钟行使了1500米,故速度为150米/分,图象过原点,所以函数关系式为S=150t();
故答案为:;;
(4)线段BC表示修车后行使情况:5分钟行使了1500米,
故速度为1500÷5=300(米/分);
故答案为 :300.
【点睛】
此题考查一次函数及其图象的应用,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势,能够从图象中获取相关信息是关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课时训练,共22页。
这是一份冀教版第二十章 函数综合与测试当堂检测题,共22页。
这是一份2020-2021学年第二十章 函数综合与测试练习题,共24页。试卷主要包含了小斌家等内容,欢迎下载使用。