数学八年级下册第二十章 函数综合与测试课时训练
展开这是一份数学八年级下册第二十章 函数综合与测试课时训练,共24页。
冀教版八年级数学下册第二十章函数章节练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,已知在ABC中,AB=AC,点D沿BC自B向C运动,作BE⊥AD于E,CF⊥AD于F,则BE+CF的值y与BD的长x之间的函数图象大致是( )
A. B.
C. D.
2、下列图象表示的两个变量间的关系中,y不是x的函数的是( )
A. B.
C. D.
3、下列关于变量x,y的关系,其中y不是x的函数的是( )
A. B.
C. D.
4、甲、乙两地相距180km,一辆货车和一辆小汽车同时从甲地出发,各自匀速向乙地行驶,货车的速度为60千米/小时,小汽车的速度为90千米/小时.小汽车到达乙地后,立即按原速沿原路返回甲地.则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是( )
A. B.
C. D.
5、如图,图中的函数图象描述了甲乙两人越野登山比赛.(x表示甲从起点出发所行的时间,表示甲的路程,表示乙的路程).下列4个说法:
①越野登山比赛的全程为1000米;
②甲比乙晚出发40分钟;
③甲在途中休息了10分钟;
④乙追上甲时,乙跑了750米.其中正确的说法有( )个
A.1 B.2 C.3 D.4
6、如图,在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D→A作匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致是( )
A. B.
C. D.
7、速度分别为100km/h和akm/h(0<a<100)的两车分别从相距s千米的两地同时出发,沿同一方向匀速前行.行驶一段时间后,其中一车按原速度原路返回,直到与另一车相遇时两车停止.在此过程中,两车之间的距离y(km)与行驶时间t(h)之间的函数关系如图所示.下列说法:
①a=60;②b=2;③c=b+;④若s=40,则b=.其中说法正确的是( )
A.①②③ B.①④ C.①② D.①③
8、小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的关系.则小亮步行的速度和乘公交车的速度分别是( )
A.100 m/min,266m/min B.62.5m/min,500m/min
C.62.5m/min,437.5m/min D.100m/min,500m/min
9、小江和小北两兄弟步行从家里去公园,小江先出发一段时间后小北再出发,途中小北追上了小江最终先到达公园,两人所走路程s(米)与小北出发后的时间t(分钟)的函数关系如图所示.下列说法正确的是( )
A.表示的是小江步行的情况,表示的是小北步行的情况
B.小江的速度是45米/分钟,小北的速度是60米/分钟
C.小江比小北先出发16分钟.
D.小北出发后8分钟追上小江
10、某天,小南和小开两兄弟一起从家出发到某景区旅游,开始大家一起乘坐时速为50千米的旅游大巴,出发2小时后,小南有急事需回家,于是立即下车换乘出租车,一个小时后返回家中,办事用了30分钟后自己驾车沿同一路线以返回时的速度赶往景区,结果小南比小开早30分钟到达景区(三车的速度近似匀速,上下车的时间忽略不计,两地之间为直线路程),两人离家的距离y(千米)与出发时间x(小时)的关系如图所示,则以下说法错误的是( )
A.出租车的速度为100千米/小时 B.小南追上小开时距离家300千米
C.小南到达景区时共用时7.5小时 D.家距离景区共400千米
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图所示,在三角形中,已知,高,动点由点沿向点移动不与点重合设的长为,三角形的面积为,则与之间的关系式为___________________.
2、定义:用_______来表示函数关系的方法叫做列表法.
列表法一目了然,使用起来比较方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律.
3、已知函数f(x)=,f(2)=___.
4、函数的表示方法通常有三种,它们是_______、_______、_______.
5、在一条笔直的公路上依次有A、B、C三地,A、B两地相距210千米.甲、乙两车分别从A、B两地同时出发匀速前往C地,乙到达C地后先休息30分钟,再以原速的返回到B地,甲到达C地立即停止.当乙返回到B地1.5小时后,甲到达C地.甲、乙两车之间的距离y(千米)与甲车出发的时间x(小时)之间的函数关系如图所示,则下列五个说法:①a=210;②乙车从C地返回B地的速度为90km/h;③甲出发8小时后到达C地;④A、C两地的距离为540km;⑤甲车出发小时后与乙车相遇.其中正确的有_____.
三、解答题(5小题,每小题10分,共计50分)
1、一个三角形的底边长为5,高h可以任意伸缩.写出面积S随h变化的解析式,并指出其中的常量与变量,自变量与函数,以及自变量的取值范围.
2、下列问题中哪些量是自变量?哪些量是自变量的函数?试写出函数的解析式.
(1)改变正方形的边长x,正方形的面积S随之改变.
(2)每分向一水池注水,注水量y(单位:)随注水时间x(单位:)的变化而变化.
(3)秀水村的耕地面积是,这个村人均占有耕地面积y(单位;)随这个村人数n的变化而变化.
(4)水池中有水,此后每小时漏水,水池中的水量V(单位:L)随时间t(单位:h)的变化而变化.
3、七年级下册第三章中有如下三个问题,能否将其中变量之间的关系看成函数?
(1)小车下滑过程中下滑时间与支撑物高度之间的关系;
(2)三角形一边上的高一定时,三角形面积与该边的长度之间的关系;
(3)骆驼某日体温随时间的变化曲线所确定的温度与时间的关系.
4、在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质及其应用的过程.以下是我们研究函数的性质及其应用的部分过程.请按要求完成下列各小题.
(1)请把表补充完整,并在给出的图中补全该函数的大致图像;
(2)请根据这个函数的图像,写出该函数的一条性质;
(3)已知函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.(近似值保留一位小数,误差不超过0.2)
…… | -5 | -4 | -3 | -2 | 0 | 2 | 3 | 4 | 5 | …… | |||
…… | -1 | 4 |
|
|
| …… |
5、已知某函数图象如图所示,请回答下列问题:
(1)自变量的取值范围是
(2)函数值的取值范围是
(3)当为 时,函数值最大;当为 时,函数值最小
(4)当随的增大而增大时,的取值范围是
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据题意过点A作AD′⊥BC于点D′,由题可知,当点D从点B运动到点C,即x从小变大时,AD也是由大变小再变大,而△ABC的面积不变,又S=AD,即y是由小变大再变小,结合选项可得结论.
【详解】
解:过点A作AD′⊥BC于点D′,如图,
由题可知,当点D从点B运动到点C,即x从小变大中,AD也是由大变小再变大,
而△ABC的面积不变,又S=AD,即y是由小变大再变小,
结合选项可知,D选项是正确的;
故选:D.
【点睛】
本题主要考查动点问题的函数图象,题中没有给任何的数据,需要通过变化趋势进行判断.
2、D
【解析】
【分析】
根据一个x值只能对应一个y值判断即可;
【详解】
根据一个x值只能对应一个y值可知D不是y不是x的函数;
【点睛】
本题主要考查了函数图像的判断,准确分析判断是解题的关键.
3、D
【解析】
【详解】
解:A、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;
B、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;
C、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;
D、当时,有两个的值与其对应,所以不是的函数,此项符合题意;
故选:D.
【点睛】
本题考查了函数,熟记函数的定义(一般地,在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数)是解题关键.
4、C
【解析】
【分析】
根据出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米;经过三小时,货车到达乙地距离变为零,故而得出答案.
【详解】
解:由题意得出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米,经过三小时,货车到达乙地距离变为零,故C符合题意,
故选:C.
【点睛】
本题考查了函数图象,理解题意并正确判断辆车与乙地的距离是解题关键.
5、C
【解析】
【分析】
根据终点距离起点1000米即可判断①;根据甲、乙图像的起点可以判断②;根据AB段为甲休息的时间即可判断③;设乙需要t分钟追上甲,,求出t即可判断④.
【详解】
解:由图像可知,从起点到终点的距离为1000米,故①正确;
根据图像可知甲出发40分钟之后,乙才出发,故乙比甲晚出发40分钟,故②错误;
在AB段时,甲的路程没有增加,即此时甲在休息,休息的时间为40-30=10分钟,故③正确;
∵乙从起点到终点的时间为10分钟,
∴乙的速度为1000÷10=100米/分钟,
设乙需要t分钟追上甲,
,
解得t=7.5,
∴乙追上甲时,乙跑了7.5×100=750米,故④正确;
故选C.
【点睛】
本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.
6、B
【解析】
【分析】
运用动点函数进行分段分析,当P在BC上,P在CD上以及P在AD上时,分别求出函数解析式,再结合图象得出符合要求的解析式.
【详解】
解:点P从点B到点C,△ABP的面积S与点P运动的路程x之间的函数关系是:S=×AB×BP=×2x=x;
因为从点C到点D,△ABP的面积一定:2×1÷2=1,
所以S与点P运动的路程x之间的函数关系是:S=1(1≤x≤3);
点P从点D到点A,△ABP的面积S与点P运动的路程x之间的函数关系是:S=×AB×AP=×2×(4﹣x)=﹣x+4.
所以△ABP的面积y与点P运动的路程x之间的函数图象大致是:
故选:B.
【点睛】
本题主要考查了动点问题的函数图像,考查了分类讨论思想的应用,解答此题的关键是分别判断出从点到点以及从点到点,△ABP的面积S与点P运动的路程x之间的函数关系.
7、D
【解析】
【分析】
①利用“速度=路程÷时间”可求出两车的速度差,结合快车的速度即可求得a值,即可判断①;②利用“时间=两车之间的距离÷两车速度差”可得出b值,由s不确定可得出b值不确定即可判断②;③利用“两车第二次相遇的时间=快车转向时的时间+两车之间的距离÷两车的速度之和”可得出c值,即可判断③;④由②的结论结合s=40可得出b值,即可判定④.
【详解】
解:①两车的速度之差为80÷(b+2﹣b)=40(km/h),
∴a=100﹣40=60,结论①正确;
②两车第一次相遇所需时间=(h),
∵s的值不确定,
∴b值不确定,结论②不正确;
③两车第二次相遇时间为b+2+=b+(h),
∴c=b+,结论③正确;
④∵b=,s=40,
∴b=1,结论④不正确.
故选:D.
【点睛】
本题主要考查了一次函数的应用,掌握数形结合思想成为解答本题的关键.
8、D
【解析】
【分析】
根据图象可以确定他离家8km用了多长时间,等公交车时间是多少,他步行的时间和对应的路程,公交车运行的时间和对应的路程,然后确定各自的速度.
【详解】
解:由图象可知:他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min;
公交车(30−16)min走了(8−1)km,故公交车的速度为7000÷14=500m/min.
故选:D.
【点睛】
本题考查利用函数的图象解决实际问题,解决本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.
9、C
【解析】
【分析】
观察图象,可得:表示的是小北步行的情况,表示的是小江步行的情况,可得A错误;小江32分钟步行(1440-480)米,小北24分钟步行1440米,再根据该时间段内的速度等于路程除以时间,可得B错误;因为小江比小北先走480米,所以用480除以小江的速度30,可得C正确;设小北出发后 分钟追上小江,则 ,解出可得D错误,即可求解.
【详解】
解:根据题意得:
A、因为小江先出发一段时间后小北再出发,所以表示的是小北步行的情况,表示的是小江步行的情况,故本选项不符合题意;
B、小江的速度是米/分钟,小北的速度是米/分钟,故本选项不符合题意;
C、观察图象,得:小江比小北先出发 分钟,故本选项符合题意;
D、设小北出发后 分钟追上小江,则 ,解得: ,即小北出发后16分钟追上小江,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了函数图象的应用,准确从函数图象获取信息是解题的关键.
10、B
【解析】
【分析】
先根据旅游大巴2小时行2×50=100千米,出租车1小时行驶100千米,出租车速度可判断A正确;设小南t小时追上小开,利用两者距离相等列方程 50(2+1+0.5+t)=100t,解得t=3.5,可判断B不正确;利用到旅游区两者距离相等列方程50(2+1+0.5+t+0.5)=100t,解得t=4,可判断C正确;利用自驾车行驶速度×时间=100×4=400千米,可求出家距离景区共400千米,可判断D正确.
【详解】
解:旅游大巴2小时行2×50=100千米,出租车1小时行驶100千米,出租车速度为100÷1=100千米/时,
故选项A正确;
设小南t小时追上小开,
50(2+1+0.5+t)=100t,
解得t=3.5,
∴100×3.5=350千米,
故选项B不正确;
50(2+1+0.5+t+0.5)=100t,
解得t=4,
∴小南到达景区时共用2+1+0.5+4=7.5小时,
故选项C正确;
∵100×4=400千米,
∴家距离景区共400千米,
故选项D正确.
故选B.
【点睛】
本题考查函数图像信息获取与处理,掌握函数图像信息获取与处理方法是解题关键.
二、填空题
1、
【解析】
【分析】
根据三角形的面积公式可知,由此求解即可.
【详解】
∵AD是△ABC中BC边上的高,CQ的长为x,
∴,
∴.
故答案为:.
【点睛】
本题主要考查了列关系式,解题的关键在于能够熟练掌握三角形面积公式.
2、表格
【解析】
略
3、##
【解析】
【分析】
将代入f(x)=,求解即可.
【详解】
解:将代入f(x)=,
得:f(2).
故答案为:.
【点睛】
此题考查了函数的代入求值,解题的关键是将代入f(x)=求解.
4、 解析式法 列表法 图象法
【解析】
略
5、①⑤
【解析】
【分析】
根据A、B两地相距210千米得出a的值;根据乙到达C地后先休息30分钟时再以原速的返回到B地,甲到达C地立即停止.当乙返回到B地1.5小时后,甲到达C地.可求出甲车的速度;从而得出乙车的速度;求出A、C两地的距离可得甲到达C地的时间;根据x=3.5时甲、乙两车的距离以及速度可判断④.
【详解】
解:∵A、B两地相距210千米.
∴a=210,①正确;
由图象得:乙到达C地后先休息30分钟,
即3.5小时时,甲距C地360千米,
再以原速的返回到B地,甲到达C地立即停止.
可知回时所用的时间为:小时,
当乙返回到B地1.5小时后,甲到达C地.
可知甲在3.5小时时开始运动,经过小时到达C地,
故甲车的速度为:,
则3小时时,两车的距离为:,
设乙车的速度为,则,
解得:,
∴乙车从C地返回B地的速度为:120×=80(千米/小时),②错误;
B、C两地的距离为:120×3=360(千米),
∴A、C两地的距离为:360+210=570(千米),④错误;
∴570÷60=(小时),即甲出发小时后到达C地,③错误;
∵x=3.5时,甲、乙两车之间的距离是360千米,
∴360÷(80+60)=(小时),即再行驶小时两车相遇,
+3.5=(小时),即甲车出发小时后与乙车相遇.⑤正确.
∴其中正确的有①⑤.
故答案为:①⑤.
【点睛】
本题考查了函数图象信息读取,准确读出图象含义是解题的关键.
三、解答题
1、常量,变量h,S,自变量,函数S,.
【解析】
【分析】
根据三角形的面积公式,可得函数关系式.
【详解】
解:由三角形的面积公式,得:,
常量是,变量h,S,自变量,函数S.
【点睛】
本题考查了函数关系式,利用三角形的面积公式得出函数解析式是解题关键.
2、(1)自变量x,函数S,;
(2)自变量x,函数y,;
(3)自变量n,函数y,;
(4)自变量t,函数V,
【解析】
【分析】
(1)正方形的边长x为自变量,面积S随之改变,则面积S为边长x的函数;
(2)每分向一水池注水,注水量y(单位:)随注水时间x(单位:)的变化而变化,则注水量y(单位:)是注水时间x(单位:)的函数;
(3)这个村人数为n,人均占有耕地面积y(单位;)随这个村人数n的变化而变化,则人均占有耕地面积y(单位;)是村人数n的函数;
(4)时间为t(单位:h),水池中的水量V(单位:L)随时间t(单位:h)的变化而变化,则水池中的水量V(单位:L)是时间t(单位:h)的函数.
【详解】
解:(1)自变量x,函数S,;
(2)自变量x,函数y,;
(3)自变量n,函数y,;
(4)自变量t,函数V,.
【点睛】
本题考查变量与函数,理解函数的定义,准确确定自变量与函数是解题关键.
3、(1)能;(2)能;(3)能.
【解析】
【分析】
(1)(2)(3)分别可根据函数的概念:在一个变化过程中,如果有两个变量x、y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,我们就说x是自变量,y是x的函数;由此问题可求解.
【详解】
解:(1)由题意可知下滑的每一个时间t,都有一个对应的高度h,所以符合函数的概念;
(2)由题意可知三角形的面积,由于h是一定值,故一个x对应一个S,所以符合函数的概念;
(3)骆驼一个时间会对应一个体温,所以符合函数的概念;
∴(1)(2)(3)都可以看出函数.
【点睛】
本题主要考查函数的概念,熟练掌握函数的概念是解题的关键.
4、(1)见解析;(2)当时,随的增大而增大﹔当时,随的增大而减小﹔当时,随的增大而减小﹔(3)或
【解析】
【分析】
(1)由题意利用函数解析式分别求出对应的函数值即可;进而利用描点法画出图象即可;
(2)根据题意观察图象可知该函数图象的增减性,以此进行分析即可;
(3)根据题意直接利用图象即可解决问题.
【详解】
解:(1)
… | -5 | -4 | -3 | -2 | 0 | 2 | 3 | 4 | 5 | … | |||
… | -1 | 4 | 2 | 1 | … |
补全图象如下:
(2)当时,随的增大而增大﹔当时,随的增大而减小﹔当时,随的增大而减小﹔
(3)由图象可知不等式的解集为:或.
【点睛】
本题考查函数图象和性质,能够从表格中获取信息,利用描点法画出函数图象,并结合函数图象解题是关键.
5、 (1)-4≤x≤3
(2)-2≤y≤4
(3)1;-2
(4)-2≤x≤1
【解析】
【分析】
根据自变量的定义,函数值的定义以及函数的最值和增减性,观察函数图象分别写出即可.
(1)
根据图像观察可得:自变量x的取值范围是-4≤x≤3;
(2)
根据图像观察可得:函数y的取值范围是-2≤y≤4;
(3)
根据图像观察可得:当x为1时,函数值最大;当x为-2时,函数值最小;
(4)
根据图像观察可得:当y随x的增大而增大时,x的取值范围是-2≤x≤1.
【点睛】
本题考查了函数的性质、函数图象,熟练掌握函数自变量的定义,函数值的定义以及函数的增减性并准确识图是解题的关键.
相关试卷
这是一份冀教版八年级下册第二十章 函数综合与测试复习练习题,共27页。试卷主要包含了小斌家等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十章 函数综合与测试课堂检测,共20页。
这是一份初中第二十章 函数综合与测试练习,共20页。试卷主要包含了函数y=的自变量x的取值范围是,下图中表示y是x函数的图象是等内容,欢迎下载使用。