初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课时作业
展开这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课时作业,共25页。试卷主要包含了下列命题是真命题的有个.等内容,欢迎下载使用。
八年级数学下册第二十二章四边形同步测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、平行四边形ABCD中,若∠A=2∠B,则∠C的度数为( )
A.120° B.60° C.30° D.15°
2、如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B′恰好落在AD边上,则BE的长度为( )
A.1 B. C. D.2
3、十边形中过其中一个顶点有( )条对角线.
A.7 B.8 C.9 D.10
4、如图.在长方形纸片ABCD中,AB=12,AD=20,所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.点P,Q分别在边AB、AD上移动,则点A′在BC边上可移动的最大距离为( )
A.8 B.10 C.12 D.16
5、在Rt△ABC中,∠B=90°,D,E,F分别是边BC,CA,AB的中点,AB=6,BC=8,则四边形AEDF的周长是( )
A.18 B.16 C.14 D.12
6、已知在平行四边形ABCD中,∠A=90°,如果添加一个条件,可使该四边形是正方形,那么这个条件可以是( )
A.∠D=90° B.AB=CD C.AD=BC D.BC=CD
7、如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO=4,直线l:y=3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为( )
A.7 B.6 C.4 D.8
8、下列命题是真命题的有( )个.
①一组对边相等的四边形是矩形;②两条对角线相等的四边形是矩形;③四条边都相等且对角线互相垂直的四边形是正方形;④四条边都相等的四边形是菱形;⑤一组邻边相等的矩形是正方形.
A.1 B.2 C.3 D.4
9、菱形周长为20,其中一条对角线长为6,则菱形面积是( )
A.48 B.40 C.24 D.12
10、若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是( )
A.5或6 B.6或7 C.5或6或7 D.6或7或8
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、两组对边分别________的四边形叫做平行四边形.
平行四边形不相邻的两个顶点连成的线段叫它的________.
如图所示的四边形ABCD是平行四边形.
记作:________,读作:平行四边形ABCD
线段________、________就是平行四边形ABCD的对角线.
平行四边形相对的边,称为 ________,相对的角称为________.
对边:AB与CD;BC与DA.
对角:∠ABC与∠CDA;∠BAD与∠DCB.
2、如图,正方形ABCD中,E是BC边上的一点,连接AE,将AB边沿AE折叠到AF.延长EF交DC于G,点G恰为CD边中点,连接AG,CF,AC.若AB=6,则△AFC的面积为_______.
3、如图,正方形ABCD的边长为4,E是BC的中点,在对角线BD上有一点P,则PC+PE的最小值是_______.
4、如图,已知在△ABC中,D,E分别是AB,AC的中点,F,G分别是AD,AE的中点,且FG=2 cm,则BC的长度是_______ cm.
5、如图,四边形是菱形,与相交于点,添加一个条件:________,可使它成为正方形.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平行四边形中,、分别是边、上的点,且,,求证:四边形是矩形
2、如图1,已知∠ACD是ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即:三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?
(1)尝试探究:如图2,已知:∠DBC与∠ECB分别为ABC的两个外角,则∠DBC+∠ECB-∠A 180°.(横线上填<、=或>)
(2)初步应用:如图3,在ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案:∠P= .
(3)解决问题:如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠BAD、∠CDA的数量关系.
3、如图,在矩形ABCD中,
(1)尺规作图(不写作法,保留作图痕迹):作对角线BD的垂直平分线EF分别交AD、BC于E、F点,交BD于O点.
(2)在(1)的条件下,求证:AE=CF.
4、如图,正方形ABCD和正方形CEFG,点G在CD上,AB=5,CE=2,T为AF的中点,求CT的长.
5、(1)【发现证明】
如图1,在正方形中,点,分别是,边上的动点,且,求证:.小明发现,当把绕点顺时针旋转90°至,使与重合时能够证明,请你给出证明过程.
(2)【类比引申】
①如图2,在正方形中,如果点,分别是,延长线上的动点,且,则(1)中的结论还成立吗?若不成立,请写出,,之间的数量关系______(不要求证明)
②如图3,如果点,分别是,延长线上的动点,且,则,,之间的数量关系是______(不要求证明)
(3)【联想拓展】如图1,若正方形的边长为6,,求的长.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据平行四边形的性质得出BCAD,根据平行线的性质推出∠A+∠B=180°,代入求出即可.
【详解】
解:∵四边形ABCD是平行四边形,
∴BCAD,
∴∠A+∠B=180°,
把∠A=2∠B代入得:3∠B=180°,
∴∠B=60°,
∴∠C=120°
故选:A.
【点睛】
本题主要考查对平行四边形的性质,平行线的性质等知识点的理解和掌握,能推出∠A+∠B=180°是解此题的关键.
2、D
【解析】
【分析】
由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3-x,由直角三角形的性质可得:2(3-x)=x,解方程求出x即可得出答案.
【详解】
解:∵四边形ABCD是正方形,
∴AB∥CD,∠A=90°,
∴∠EFD=∠BEF=60°,
∵将四边形EBCF沿EF折叠,点B'恰好落在AD边上,
∴∠BEF=∠FEB'=60°,BE=B'E,
∴∠AEB'=180°-∠BEF-∠FEB'=60°,
∴B'E=2AE,
设BE=x,则B'E=x,AE=3-x,
∴2(3-x)=x,
解得x=2.
故选:D.
【点睛】
本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.
3、A
【解析】
【分析】
根据多边形对角线公式解答.
【详解】
解:十边形中过其中一个顶点有10-3=7条对角线,
故选:A.
【点睛】
此题考查了多边形对角线公式,理解公式的得来方法是解题的关键.
4、A
【解析】
【分析】
根据翻折的性质,可得BA′与AP的关系,根据线段的和差,可得A′C,根据勾股定理,可得A′C,根据线段的和差,可得答案.
【详解】
解:①在长方形纸片ABCD中,AB=12,AD=20,
∴BC=AD=20,
当p与B重合时,BA′=BA=12,
CA′=BC-BA′=20-12=8,
②当Q与D重合时,
由折叠得A′D=AD=20,
由勾股定理,得
CA′==16,
CA′最远是16,CA′最近是8,点A′在BC边上可移动的最大距离为16-8=8,
故选:A.
【点睛】
本题考查了矩形的性质,翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.
5、B
【解析】
略
6、D
【解析】
略
7、A
【解析】
【分析】
如图所示,连接AC,OB交于点D,先求出C和A的坐标,然后根据矩形的性质得到D是AC的中点,从而求出D点坐标为(2,1),再由当直线经过点D时,可将矩形OABC的面积平分,进行求解即可.
【详解】
解:如图所示,连接AC,OB交于点D,
∵C是直线与y轴的交点,
∴点C的坐标为(0,2),
∵OA=4,
∴A点坐标为(4,0),
∵四边形OABC是矩形,
∴D是AC的中点,
∴D点坐标为(2,1),
当直线经过点D时,可将矩形OABC的面积平分,
由题意得平移后的直线解析式为,
∴,
∴,
故选A.
【点睛】
本题主要考查了一次函数与几何综合,一次函数的平移,矩形的性质,解题的关键在于能够熟知过矩形中心的直线平分矩形面积.
8、B
【解析】
【分析】
根据两条对角线平分且相等的四边形是矩形,四条边都相等的四边形是菱形,如果对角线互相垂直平分且相等,那么这个四边形是正方形进行判断即可.
【详解】
解:①一组对边相等的四边形不一定是矩形,错误;
②两条对角线相等的平行四边形是矩形,错误;
③四条边都相等且对角线互相垂直的四边形是菱形,错误;
④四条边都相等的四边形是菱形,正确;
⑤一组邻边相等的矩形是正方形,正确.
故选:B.
【点睛】
此题考查考查平行四边形、矩形、菱形、正方形的判定方法,关键是根据矩形、正方形、菱形的判定解答.
9、C
【解析】
【分析】
由菱形对角线互相垂直且平分的性质、结合勾股定理解得,继而解得AC的长,最后根据菱形的面积公式解题.
【详解】
解:如图,,
菱形的周长为20,
,
四边形是菱形,
,,,
由勾股定理得,则,
所以菱形的面积.
故选:C.
【点睛】
本题考查菱形的性质、勾股定理等知识,是重要考点,掌握相关知识是解题关键.
10、C
【解析】
【分析】
实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到.
【详解】
解:如图,原来多边形的边数可能是5,6,7.
故选C
【点睛】
本题考查的是截去一个多边形的一个角,解此类问题的关键是要从多方面考虑,注意不能漏掉其中的任何一种情况.
二、填空题
1、 平行 对角线 AC BD 对边 对角
【解析】
略
2、3.6##
【解析】
【分析】
首先通过HL证明Rt△ABE≌Rt△AFB,得BE=EF,同理可得:DG=FG,设BE=x,则CE=6﹣x,EG=3+x,在Rt△CEG中,利用勾股定理列方程求出BE=2,S△AFC=S△AEC﹣S△AEF﹣S△EFC代入计算即可.
【详解】
解:∵四边形ABCD是正方形,
∴AB=AD,∠B=∠D=90°,
∵将AB边沿AE折叠到AF,
∴AB=AF,∠B=∠AFB=90°,
在Rt△ABE和Rt△AFB中,
,
∴Rt△ABE≌Rt△AFB(HL),
∴BE=EF,
同理可得:DG=FG,
∵点G恰为CD边中点,
∴DG=FG=3,
设BE=x,则CE=6﹣x,EG=3+x,
在Rt△CEG中,由勾股定理得:
(x+3)2=32+(6﹣x)2,
解得x=2,
∴BE=EF=2,CE=4,
∴S△CEG=×4×3=6,
∵EF∶FG=2∶3,
∴S△EFC=×6=,
∴S△AFC=S△AEC﹣S△AEF﹣S△EFC
=×4×6﹣×2×6﹣
=12﹣6﹣
=3.6.
故答案为:3.6.
【点睛】
本题考查了三角形全等的性质与判定,勾股定理,正方形的性质,根据勾股定理求得BE的长是解题的关键.
3、
【解析】
【分析】
要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC的值,从而找出其最小值求解.
【详解】
解:如图,连接AE,PA,
∵四边形ABCD是正方形,BD为对角线,
∴点C关于BD的对称点为点A,
∴PE+PC=PE+AP,
根据两点之间线段最短可得AE就是AP+PE的最小值,
∵正方形ABCD的边长为4,E是BC边的中点,
∴BE=2,
∴AE=,
故答案为:.
【点睛】
本题主要考查了正方形的性质和轴对称及勾股定理等知识的综合应用.根据已知得出两点之间线段最短可得AE就是AP+PE的最小值是解题关键.
4、8
【解析】
略
5、
【解析】
【分析】
根据“有一个角是直角的菱形是正方形”可得到添加的条件.
【详解】
解:由于四边形 是菱形,
如果 ,
那么四边形是正方形.
故答案为: .
【点睛】
本题考查了正方形的判定,解决本题的关键是熟练掌握正方形的判定定理.
三、解答题
1、证明见解析
【解析】
【分析】
平行四边形,可知;由于 ,可得,,知四边形为平行四边形,由可知四边形是矩形.
【详解】
证明:∵四边形 是平行四边形
∴
∵
∴
∵
∴四边形为平行四边形
又∵
∴四边形是矩形.
【点睛】
本题考查了平行四边形的性质与判定,矩形的判定等知识.解题的关键在于灵活掌握矩形的判定.
2、 (1)=
(2)∠P=90°-∠A
(3)∠P=180°-∠BAD-∠CDA,探究见解析
【解析】
【分析】
(1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;
(2)根据角平分线的定义得:∠CBP=∠DBC,∠BCP=∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°−∠A;
(3)根据平角的定义得:∠EBC=180°-∠1,∠FCB=180°-∠2,由角平分线得:∠3=∠EBC=90°−∠1,∠4=∠FCB=90°−∠2,相加可得:∠3+∠4=180°−(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.
(1)
∠DBC+∠ECB-∠A=180°,
理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,
∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,
∴∠DBC+∠ECB-∠A=180°,
故答案为:=;
(2)
∠P=90°-∠A,
理由是:∵BP平分∠DBC,CP平分∠ECB,
∴∠CBP=∠DBC,∠BCP=∠ECB,
∵△BPC中,∠P=180°-∠CBP-∠BCP=180°-(∠DBC+∠ECB),
∵∠DBC+∠ECB=180°+∠A,
∴∠P=180°-(180°+∠A)=90°-∠A.
故答案为:∠P=90°-∠A,
(3)
∠P=180°-∠BAD-∠CDA,
理由是:如图,
∵∠EBC=180°-∠1,∠FCB=180°-∠2,
∵BP平分∠EBC,CP平分∠FCB,
∴∠3=∠EBC=90°-∠1,∠4=∠FCB=90°-∠2,
∴∠3+∠4=180°-(∠1+∠2),
∵四边形ABCD中,∠1+∠2=360°-(∠BAD+∠CDA),
又∵△PBC中,∠P=180°-(∠3+∠4)=(∠1+∠2),
∴∠P=×[360°-(∠BAD+∠CDA)]=180°-(∠BAD+∠CDA)=180°-∠BAD-∠CDA.
【点睛】
本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,熟练掌握三角形外角的性质是关键.
3、 (1)见解析
(2)见解析
【解析】
【分析】
(1)利用尺规作出图形即可.
(2)利用全等三角形的性质证明即可.
(1)
解:如图,直线EF即为所求作.
.
(2)
证明:在矩形ABCD中,AD=BC,∠ADB=∠DBC,
∵EF为BD的垂直平分线,
∴∠EOD=∠FOB=90°,OB=OD,
在△EOD与△FOB中,
,
∴△EOD≌△FOB(ASA),
∴ED=BF,
∴AD-ED=BC-BF,即AE=CF.
【点睛】
本题考查了作图-复杂作图,线段的垂直平分线,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
4、
【解析】
【分析】
连接AC,CF,如图,根据正方形的性质得到AC=,AB=5,CF=CE=2,∠ACD=45°,∠GCF=45°,则利用勾股定理得到AF=,然后根据直角三角形斜边上的中线性质得到CT的长.
【详解】
解:连接AC、CF,如图,
∵四边形ABCD和四边形CEFG都是正方形,
∴AC=AB=5,CF=CE=2,∠ACD=45°,∠GCF=45°,
∴∠ACF=45°+45°=90°,
在Rt△ACF中,
∵T为AF的中点,
∴,
∴CT的长为.
【点睛】
本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质,也考查了直角三角形斜边上的中线性质.
5、(1)见解析;(2)①不成立,结论:;②,见解析;(3)
【解析】
【分析】
(1)证明,可得出,则结论得证;
(2)①将绕点顺时针旋转至根据可证明,可得,则结论得证;②将绕点逆时针旋转至,证明,可得出,则结论得证;
(3)求出,设,则,,在中,得出关于的方程,解出则可得解.
【详解】
(1)证明:把绕点顺时针旋转至,如图1,
,,,
,
,,三点共线,
,
,
,
,
,
,
,
;
(2)①不成立,结论:;
证明:如图2,将绕点顺时针旋转至,
,,,,
,
,
,
;
②如图3,将绕点逆时针旋转至,
,,
,
,
,
,
,
,
.
即.
故答案为:.
(3)解:由(1)可知,
正方形的边长为6,
,
.
,
,
设,则,,
在中,
,
,
解得:.
,
.
【点睛】
本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.
相关试卷
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀课时训练,共31页。试卷主要包含了下列说法错误的是,下列说法不正确的是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课时练习,共30页。试卷主要包含了如图,正方形的边长为,对角线等内容,欢迎下载使用。
这是一份数学八年级下册第二十二章 四边形综合与测试精品练习题,共32页。试卷主要包含了已知等内容,欢迎下载使用。