年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新强化训练冀教版八年级数学下册第二十二章四边形定向测评试卷(含答案详解)

    2022年最新强化训练冀教版八年级数学下册第二十二章四边形定向测评试卷(含答案详解)第1页
    2022年最新强化训练冀教版八年级数学下册第二十二章四边形定向测评试卷(含答案详解)第2页
    2022年最新强化训练冀教版八年级数学下册第二十二章四边形定向测评试卷(含答案详解)第3页
    还剩28页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀课时训练

    展开

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀课时训练,共31页。试卷主要包含了下列说法错误的是,下列说法不正确的是等内容,欢迎下载使用。
    八年级数学下册第二十二章四边形定向测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,四边形ABCD是平行四边形,对角线AC与BD交于点O,若,,则的度数为( )

    A.157° B.147° C.137° D.127°
    2、如图,在中,DE平分,,则( )

    A.30° B.45° C.60° D.80°
    3、如图,已知长方形,,分别是,上的点,,分别是,的中点,当点在上从点向点移动,而点不动时,那么下列结论成立的是( )

    A.线段的长逐渐增大 B.线段的长逐渐减少
    C.线段的长不变 D.线段的长先增大后变小
    4、将一长方形纸条按如图所示折叠,,则( )

    A.55° B.70° C.110° D.60°
    5、下列说法错误的是( )
    A.平行四边形对边平行且相等 B.菱形的对角线平分一组对角
    C.矩形的对角线互相垂直 D.正方形有四条对称轴
    6、如图,菱形OABC的边OA在平面直角坐标系中的x轴上,,,则点C的坐标为( )

    A. B. C. D.
    7、如图,平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC等于(  )

    A.1 B.2 C.3 D.4
    8、下列说法不正确的是(  )
    A.矩形的对角线相等
    B.直角三角形斜边上的中线等于斜边的一半
    C.对角线互相垂直且相等的四边形是正方形
    D.菱形的对角线互相垂直
    9、数学课上,老师要同学们判断一个四边形门框是否为矩形.下面是某合作小组4位同学拟定的方案,其中正确的是( )
    A.测量对角线是否互相平分 B.测量一组对角是否都为直角
    C.测量对角线长是否相等 D.测量3个角是否为直角
    10、下列命题中是真命题的是( ).A.有一组邻边相等的平行四边形是菱形 B.对角线互相垂直且相等的四边形是菱形
    C.对角线相等的四边形是矩形 D.有一个角为直角的四边形是矩形
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在Rt中,,CD是斜边AB上的中线,已知,,则的周长等于______.
    2、如图,在中,∠ACB=90°,DEBC,DE=AC,若AC=2, AD=DB=4,∠ADC=30°.以下四个结论:①四边形ACED是平行四边形;②∠ABE=;③AB=;④点F是AD中点,点G、H分别是线段BC、AB上的动点,则FG+GH的最小值为.正确的是_____.(填序号)

    3、在平行四边形ABCD中,对角线AC长为8cm,,,则它的面积为______cm2.
    4、两组对边分别________的四边形叫做平行四边形.
    5、如图,在平行四边形 ABCD 中,∠D=100°,AC 为对角线,将△ACD 绕点 A 顺时针旋转一定的角度后得到△AEF,使点 D 的对应点 E 落在边 AB 上,若点 C 的对应点 F 落在边CB 的延长线上,则∠EFB 的度数为___.

    三、解答题(5小题,每小题10分,共计50分)
    1、(1)【探究一】如图1,我们可以用不同的算法来计算图形的面积.

    ①方法1:如果把图1看成一个大正方形,那么它的面积为 ;
    ②方法2:如果把图1看成是由2个大小不同的正方形和2个大小相同的小长方形组成的图形,那么它的面积为 ;(写成关于a、b的两次三项式)用两种不同的算法计算同一个图形的面积,可以得到等式 .
    (2)【探究二】如图2,从一个顶点处引n条射线,请你数一数共有多少个锐角呢?
    ①方法1:一路往下数,不回头数.
    以OA1为边的锐角有∠A1OA2、∠A1OA3、∠A1OA4、…、∠A1OAn,共有(n-1)个;
    以OA2为边的锐角有∠A2OA3、∠A2OA4、…、∠A2OAn,共有(n-2)个;
    以OA3为边的锐角有∠A3OA4、…、∠A3OAn,共有(n-3)个;
    以OAn-1为边的锐角有∠An-1OAn,共有1个;
    则图中锐角的总个数是 ;
    ②方法2:每一条边都能和除它以外的(n-1)条边形成锐角,共有n条边,可形成n(n-1)个锐角,但所有锐角都数了两遍,所以锐角的总个数是 ;
    用两种不同的方法数锐角个数,可以得到等式 .
    (3)【应用】分别利用【探究一】中得到的等式和【探究二】中运用的思想解决问题.
    ①计算:19782+20222;
    ②多边形中连接任意两个不相邻顶点的线段叫做对角线,如五边形共有5条对角线,则十七边形共有 条对角线,n边形共有 条对角线.
    2、如图,在菱形ABDE中,,点C是边AB的中点,点P是对角线AD上的动点(可与点A,D重合),连接PC,PB.已知,若要,求AP的取值范围.丞泽同学所在的学习小组根据学习函数的经验,设AP长为xcm,PC长为,PB长为.分别对函数,随自变量x的变化而变化的规律进行了探究,下面是丞泽同学所在学习小组的探究过程,请补充完整:

    (1)按照表中自变量x的值进行取点、画图、测量,分别得到了,与x的几组对应值,表格中的______;
    x/cm
    0
    1
    2
    3
    4
    5
    6

    1.73
    1.00
    1.00
    a
    2.64
    3.61
    4.58

    3.46
    2.64
    2.00
    1.73
    2.00
    2.64
    3.46
    (2)在同一平面直角坐标系xOy中,请在图中描出补全后的表中各组数值所对应的点,并画出函数的图象;
    (3)结合函数图象,解决问题:当时,估计AP的长度的取值范围是____________;
    请根据图象估计当______时,PC取到最小值.(请保留点后两位)
    3、已知在与中,,点在同一直线上,射线分别平分.

    (1)如图1,试说明的理由;
    (2)如图2,当交于点G时,设,求与的数量关系,并说明理由;
    (3)当时,求的度数.
    4、如图,已知矩形ABCD(AB<AD).E是BC上的点,AE=AD.

    (1)在线段CD上作一点F,连接EF,使得∠EFC=∠BEA(请用直尺和圆规作图,保留作图痕迹);
    (2)在(1)作出的图形中,若AB=4,AD=5,求DF的值.
    5、如图,在菱形ABCD中,点E、F分别是边CD、BC的中点

    (1)求证:四边形BDEG是平行四边形;
    (2)若菱形ABCD的边长为13,对角线AC=24,求EG的长.

    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    根据平行四边形的性质推出AO=AB,求出∠AOB的度数,即可得到的度数.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AC=2AO,
    ∵,
    ∴AO=AB,
    ∵,
    ∴,
    ∴=,
    故选:C.
    【点睛】
    此题考查了平行四边形的性质,三角形的内角和,利用邻补角求角度,正确掌握平行四边形的性质是解题的关键.
    2、C
    【解析】
    【分析】
    根据平行四边形的性质得,故,由DE平分得,即可计算.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴,
    ∴,
    ∵DE平分,
    ∴,
    ∴.
    故选:C.
    【点睛】
    本题考查平行四边形的性质,平行线的性质以及角平分线的定义,掌握平行四边形的性质是解题的关键.
    3、C
    【解析】
    【分析】
    因为R不动,所以AR不变.根据三角形中位线定理可得EF=AR,因此线段EF的长不变.
    【详解】
    解:连接.

    、分别是、的中点,
    为的中位线,
    ,为定值.
    线段的长不改变.
    故选:.
    【点睛】
    本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
    4、B
    【解析】
    【分析】
    从折叠图形的性质入手,结合平行线的性质求解.
    【详解】
    解:由折叠图形的性质结合平行线同位角相等可知,,


    故选:B.
    【点睛】
    本题考查折叠的性质及平行线的性质,解题的关键是结合图形灵活解决问题.
    5、C
    【解析】
    【分析】
    根据矩形的性质、平行四边形的性质、菱形的性质和正方形的性质分别进行判断即可.
    【详解】
    解:A、平行四边形对边平行且相等,正确,不符合题意;
    B、菱形的对角线平分一组对角,正确,不符合题意;
    C、矩形的对角线相等,不正确,符合题意;
    D、正方形有四条对称轴,正确,不符合题意;
    故选:C.
    【点睛】
    本题考查了矩形的性质、平行四边形的性质、菱形的性质和正方形的性质,掌握以上性质定理是解题的关键.
    6、A
    【解析】
    【分析】
    如图:过C作CE⊥OA,垂足为E,然后求得∠OCE=30°,再根据含30°角直角三角形的性质求得OE,最后运用勾股定理求得CE即可解答.
    【详解】
    解:如图:过C作CE⊥OA,垂足为E,
    ∵菱形OABC,
    ∴OC=OA=4
    ∵,
    ∴∠OCE=30°
    ∵OC=4
    ∴OE=2
    ∴CE=
    ∴点C的坐标为.
    故选A.

    【点睛】
    本题主要考查了菱形的性质、含30°直角三角形的性质、勾股定理等知识点,作出辅助线、求出OE、CE的长度是解答本题的关键.
    7、B
    【解析】
    【分析】
    根据平行四边形及平行线的性质可得,再由角平分线及等量代换得出,利用等角对等边可得,结合图形即可得出线段长度.
    【详解】
    解:∵四边形ABCD为平行四边形,
    ∴,
    ∴,
    ∵AE平分,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    故选:B.
    【点睛】
    题目主要考查 平行四边形及平行线的性质,利用角平分线计算,等角对等边等,理解题意,熟练运用平行四边形的性质是解题关键.
    8、C
    【解析】
    【分析】
    利用矩形的性质,直角三角形的性质,正方形的判定,菱形的性质依次判断可求解.
    【详解】
    解;矩形的对角线相等,故选项A不符合题意;
    直角三角形斜边上的中线等于斜边的一半,故选项B不符合题意;
    对角线互相垂直且相等的四边形不一定是正方形,故选项C符合题意;
    菱形的对角线互相垂直,故选项D不符合题意;
    故选:C.
    【点睛】
    本题考查了正方形的判定,矩形的性质,菱形的性质,直角三角形的性质,熟练运用这些性质解决问题是本题的关键.
    9、D
    【解析】
    【分析】
    矩形的判定方法有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形;由矩形的判定方法即可求解.
    【详解】
    解:A、对角线是否互相平分,能判定是否是平行四边形,故不符合题意;
    B、测量一组对角是否都为直角,不能判定形状,故不符合题意;
    C、测量对角线长是否相等,不能判定形状,故不符合题意;
    D、测量3个角是否为直角,若四边形中三个角都为直角,能判定矩形,故符合题意;
    故选:D.
    【点睛】
    本题考查的是矩形的判定、平行四边形的判定等知识;熟练掌握矩形的判定和平行四边形的判定与性质是解题的关键.
    10、A
    【解析】
    【分析】
    根据平行线四边形的性质得到对边相等,加上一组邻边相等,可得到四边都相等,根据菱形的定义对A、B进行判断;根据矩形的判定方法对C、D进行判断.
    【详解】
    解:A、平行四边形的对边相等,若有一组邻边相等,则四边都相等,所以该选项正确;
    B、对角线互相平分且垂直的四边形是菱形,所以该选项不正确;
    C、对角线互相平分且相等的四边形为矩形,所以该选项不正确;
    D、有三个角是直角的四边形是矩形,所以该选项不正确.
    故选:A.
    【点睛】
    本题考查了命题与定理:判断事情的语句叫命题;正确的命题叫真命题;经过证明其正确性的命题称为定理.也考查了平行四边形、矩形和菱形的判定与性质.
    二、填空题
    1、##
    【解析】
    【分析】
    过点作,根据直角三角形斜边上的中线等于斜边的一半,可得,根据等腰三角形的三线合一可得,中位线的性质求得,根据勾股定理求得,继而求得的周长.
    【详解】
    解:如图,过点作

    在Rt中,,CD是斜边AB上的中线,



    为的中点,
    又为的中点,则
    在中,

    的周长等于
    故答案为:
    【点睛】
    本题考查了直角三角形斜边上的中线等于斜边的一半,三线合一,中位线的性质与判定,勾股定理,掌握以上知识是解题的关键.
    2、①③④
    【解析】
    【分析】
    证明,结合DE=AC,可判定结论①;假设∠ABE=,在中,根据勾股定理得到,则假设不成立,可判断结论②;在中和中,利用勾股定理可求出AB的值,即可判断结论③;作点F关于BC对称的点F’,作于点H,与BC相交于点G,则,,根据“直线外一点到直线的距离,垂线段最短”可知,此时FG+GH有最小值.通过勾股定理分别求得FG、GH的值,相加即可判断结论④.
    【详解】
    解:∵∠ACB=90°,DEBC,
    ∴∠CDE=∠ACB=90°,

    又∵DE=AC,
    ∴四边形ACED是平行四边形;故结论①正确.
    ∵AD=DB=4,∠ADC=30°,
    ∴∠ABC=∠DAB=,
    假设∠ABE=,则,
    ∴在中,,
    ∴,
    ∴假设不成立;故结论②错误.
    在中,,,
    ∴,

    ∴在中,,,
    ∴,
    即AB=;故结论③正确.
    如图所示,作点F关于BC对称的点F’,作于点H,与BC相交于点G,则,,根据“直线外一点到直线的距离,垂线段最短”可知,此时FG+GH有最小值.

    连接AG,与BC相交于点M,
    ∵,∠ABC=,
    ∴,
    ∴,
    ∵四边形ACED是平行四边形,
    ∴,
    ∴,

    又∵点F是AD中点,点F与点F’关于BC对称,AD=4,
    ∴,
    ∴,
    ∴,
    ∴为等腰直角三角形,
    ∴,,
    ∴,
    又∵∠DAB=,
    ∴,
    ∴在中,,
    ∵点F是AD中点,点F与点F’关于BC对称,,
    ∴,,
    ∴,
    ∵,
    ∴,
    ∴在中,,
    ∴,
    即FG+GH的最小值为;故结论④正确.
    故答案为:①③④.
    【点睛】
    本题考查勾股定理的应用.其中涉及平行线的判定,平行四边形的判定和性质,直角三角形中角所对的直角边等于斜边的一半,等腰直角三角形的判定和性质,“一定两动”求线段最小值等问题.综合性较强.
    3、20
    【解析】
    【分析】
    根据S▱ABCD=2S△ABC,所以求S△ABC可得解.作BE⊥AC于E,在直角三角形ABE中求BE从而计算S△ABC.
    【详解】
    解:如图,过B作BE⊥AC于E.

    在直角三角形ABE中,
    ∠BAC=30°,AB=5,
    ∴BE=AB=,
    S△ABC=AC•BE=10,
    ∴S▱ABCD=2S△ABC=20(cm2).
    故答案为:20.
    【点睛】
    本题综合考查了平行四边形的性质,含30度的直角三角形的性质等.先求出对角线分成的两个三角形中其中一个的面积,然后再求平行四边形的面积,这样问题就比较简单了.
    4、平行
    【解析】

    5、20°##20度
    【解析】
    【分析】
    根据平行四边形 ABCD 性质求出∠DAB=180°-∠D=80°,根据△ACD 绕点 A 顺时针旋转一定的角度后得到△AEF,得出AF=AC,∠FAE=∠CAD,∠AFE=∠ACD,利用等腰三角形性质求出∠AFC=∠ACF=,根据平行线性质∠DAC=∠ACF=50°,利用三角形内角和求出∠ACD=180°-∠D-∠CAD=180°-100°-50°=30°即可.
    【详解】
    解:在平行四边形 ABCD 中,∠D=100°,
    ∴∠DAB=180°-∠D=80°,
    ∵△ACD 绕点 A 顺时针旋转一定的角度后得到△AEF,
    ∴AF=AC,∠FAE=∠CAD,∠AFE=∠ACD,
    ∴∠FAC=∠FAE+∠BAC=∠CAD+∠BAC=∠BAD=80°
    ∴∠AFC=∠ACF=
    ∵AD∥BC,
    ∴∠DAC=∠ACF=50°,
    ∴∠ACD=180°-∠D-∠CAD=180°-100°-50°=30°,
    ∴∠AFE=∠ACD=30°,
    ∴∠EFB=∠AFC-∠AFE=50°-30°=20°,
    故答案为20°.
    【点睛】
    本题考查平行四边形的性质,图形旋转性质,等腰三角形性质,角的和差,三角形内角和,掌握平行四边形的性质,图形旋转性质,等腰三角形性质,角的和差,三角形内角和是解题关键.
    三、解答题
    1、(1)①;②;=;(2)①(n-1)+(n-2)+(n-3)+……+1;②;(n-1)+(n-2)+(n-3)+……+1=;(3)①8000968;②119,n(n-3)
    【解析】
    【分析】
    (1)①根据边长为(a+b)的正方形面积公式求解即可;
    ②利用矩形和正方形的面积公式求解即可;
    (2)①根据题中的数据求和即可;
    ②根据题意求解即可;
    (3)①利用(1)的规律求解即可;
    ②根据n边形从一个顶点出发可引出(n-3)条对角线.从n个顶点出发引出(n-3)条,而每条重复一次,所以n边形对角线的总条数为n(n-3)(n≥3,且n为整数)可得答案.
    【详解】
    解:(1)①大正方形的面积为;
    ②由2个大小不同的正方形和2个大小相同的小长方形组成的图形的面积为;
    可以得到等式:=;
    故答案为:①;②;=;
    (2)①图中锐角的总个数是:(n-1)+(n-2)+(n-3)+……+1;
    ②锐角的总个数是n(n-1);
    可以得到等式为(n-1)+(n-2)+(n-3)+……+1=n(n-1);
    故答案为:①(n-1)+(n-2)+(n-3)+……+1;②n(n-1);(n-1)+(n-2)+(n-3)+……+1=n(n-1);
    (3)①19782+20222=[2000+(-22)]2+(2000+22)2
    =20002+(-22)2+2×2000×(-22)+20002+222+2×2000×22
    =2×(20002+222)
    =2×[4000000+(20+2)2]
    =2×[4000000+(202+22+2×20×2)]=8000968;
    ②一个四边形共有2条对角线,即×4×(4-3)=2;
    一个五边形共有5条对角线,即×5×(5-3)=5;
    一个六边形共有9条对角线,即×6×(6-3)=9;
    ……,
    一个十七边形共有×17×(17-3)=119条对角线;
    一个n边形共有n(n-3)(n≥3,且n为整数)条对角线.
    故答案为:119,n(n-3).
    【点睛】
    本题考查了图形的变化规律,完全平方公式,多边形的对角线,对于这种图形的变化规律的问题,读懂题目信息,找到变化规律是解题的关键.
    2、 (1)
    (2)见解析
    (3)0≤AP≤3,1.50
    【解析】
    【分析】
    (1)证明△PAB为直角三角形,再根据勾股定理得出,而点C是线段AB的中点,即可求解;
    (2)描点绘出函数图象即可;
    (3)观察分析函数图象即可求解.
    (1)
    解:在菱形ABDE中,AB=BD
    ∵,
    ∴,
    ∵AD=6
    当x=AP=3时,则P为AD的中点
    ∴,
    ∴AB=2BP,,
    ∴,
    ∵点C是边AB的中点,
    ∴,即
    (2)
    描点绘出函数图象如下(0≤x≤6)

    (3)
    当PC的长度不大于PB长度时,即y1≤y2,从图象看,此时,0≤x≤3,即0≤AP≤3,
    从图象看,当x大约为1.50时,y1即PC取到最小值;
    故答案为:0≤AP≤3;1.50.
    【点睛】
    本题考查函数的图象,直角三角形的判定和性质等知识,解题的关键是理解题意,学会利用图象法解决问题,属于中考常考题型.
    3、 (1)理由见解析
    (2),理由见解析
    (3)
    【解析】
    【分析】
    (1),,可知,进而可说明;
    (2)如图1所示,连接并延长至点K,分别平分,则设,为的外角,,同理,
    ,得;又由(1)中证明可知,,进而可得到结果;
    (3)如图2所示,过点C作,则,,可得,由(1)中证明可得,在中, ,即,进而可得到结果.
    (1)
    证明:


    在和中



    (2)
    解:.
    理由如下:如图1所示,连接并延长至点K

    分别平分
    则设
    为的外角

    同理可得




    又由(1)中证明可知
    由三角形内角和公式可得



    (3)
    解:当时,如图2所示,过点C作,则

    ,即
    由(1)中证明可得
    在中,根据三角形内角和定理有


    即,解得:
    故.
    【点睛】
    本题考查了全等三角形的判定与性质、三角形的外角性质、三角形内角和定理、平行线的性质、角平分线的性质等知识,连接并延长,利用三角形外角性质证得是解题的关键.
    4、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)作∠DAE的角平分线,与DC的交点即为所求,理由:可先证明△AEF≌△ADF,可得∠AEF=∠D=90°,从而得到∠DAE+∠DFE=180°,进而得到∠EFC=∠DAE,再由AD∥BC,即可求解;
    (2)根据矩形的性质可得∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,从而得到BE=3,进而得到EC=2,然后在 中,由勾股定理,即可求解.
    (1)
    解:如图,作∠DAE的角平分线,与DC的交点即为所求.

    ∵AE=AD,∠EAF=∠DAF,AF=AF,
    ∴△AEF≌△ADF,
    ∴∠AEF=∠D=90°,
    ∴∠DAE+∠DFE=180°,
    ∵∠EFC+∠DFE=180°,
    ∴∠EFC=∠DAE,
    ∵在矩形ABCD中,AD∥BC,
    ∴∠BEA=∠DAE,
    ∴∠EFC=∠BEA;
    (2)
    解:∵四边形ABCD是矩形,
    ∴∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,
    ∵AE=AD=5,
    ∴BE===3,
    ∴EC=BC﹣BE=5﹣3=2,
    由(1)得:△AEF≌△ADF,
    ∴ ,
    在 中, ,
    ∴ ,
    ∴ .
    【点睛】
    本题主要考查了矩形的性质,全等三角形的判定和性质,勾股定理等知识,熟练掌握矩形的性质,全等三角形的判定和性质,勾股定理是解题的关键.
    5、 (1)证明见解析
    (2)10
    【解析】
    【分析】
    (1)利用AC平分∠BAD,AB∥CD,得到∠DAC=∠DCA,即可得到AD=DC,利用一组对边平行且相等可证明四边形ABCD是平行四边形,再结合AB=AD,即可求证结论;
    (2)根据菱形的性质,得到CD=13,AO=CO=12,结合中位线性质,可得四边形BDEG是平行四边形,利用勾股定理即可得到OB、OD的长度,即可求解.
    (1)
    证明:∵AC平分∠BAD,AB∥CD,
    ∴∠DAC=∠BAC,∠DCA=∠BAC,
    ∴∠DAC=∠DCA,
    ∴AD=DC,
    又∵AB∥CD,AB=AD,
    ∴AB∥CD且AB=CD,
    ∴四边形ABCD是平行四边形,
    ∵AB=AD,
    ∴四边形ABCD是菱形.
    (2)
    解:连接BD,交AC于点O,如图:

    ∵菱形ABCD的边长为13,对角线AC=24,
    ∴CD=13,AO=CO=12,
    ∵点E、F分别是边CD、BC的中点,
    ∴EF∥BD(中位线),
    ∵AC、BD是菱形的对角线,
    ∴AC⊥BD,OB=OD,
    又∵AB∥CD,EF∥BD,
    ∴DE∥BG,BD∥EG,
    ∵四边形BDEG是平行四边形,
    ∴BD=EG,
    在△COD中,
    ∵OC⊥OD,CD=13,CO=12,
    ∴,
    ∴EG=BD=10.
    【点睛】
    本题考查了平行四边形性质判定方法、菱形的判定和性质、等腰三角形性质、勾股定理等知识,关键在于熟悉四边形的判定方法和在题目中找到合适的判定条件.

    相关试卷

    初中数学第二十二章 四边形综合与测试优秀达标测试:

    这是一份初中数学第二十二章 四边形综合与测试优秀达标测试,共31页。试卷主要包含了六边形对角线的条数共有等内容,欢迎下载使用。

    初中冀教版第二十二章 四边形综合与测试精品同步训练题:

    这是一份初中冀教版第二十二章 四边形综合与测试精品同步训练题,共26页。

    冀教版八年级下册第二十二章 四边形综合与测试精品课后作业题:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试精品课后作业题,共25页。试卷主要包含了如图,正方形的边长为,对角线,下列说法不正确的是,已知锐角∠AOB,如图.等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map