年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新精品解析冀教版八年级数学下册第二十二章四边形定向测评试题(含答案解析)

    2022年最新精品解析冀教版八年级数学下册第二十二章四边形定向测评试题(含答案解析)第1页
    2022年最新精品解析冀教版八年级数学下册第二十二章四边形定向测评试题(含答案解析)第2页
    2022年最新精品解析冀教版八年级数学下册第二十二章四边形定向测评试题(含答案解析)第3页
    还剩22页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第二十二章 四边形综合与测试优秀课时训练

    展开

    这是一份2021学年第二十二章 四边形综合与测试优秀课时训练,共25页。
    八年级数学下册第二十二章四边形定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、在中,若,则的度数是(       A. B. C. D.2、若菱形的周长为8,高为2,则菱形的面积为(       A.2 B.4 C.8 D.163、下列说法正确的是(  )A.只有正多边形的外角和为360°B.任意两边对应相等的两个直角三角形全等C.等腰三角形有两条对称轴D.如果两个三角形一模一样,那么它们形成了轴对称图形4、将一长方形纸条按如图所示折叠,,则       A.55° B.70° C.110° D.60°5、如图,DE的中位线,若,则BC的长为(   )A.8 B.7 C.6 D.7.56、如图,平行四边形ABCD的边BC上有一动点E,连接DE,以DE为边作矩形DEGF且边FG过点A.在点E从点B移动到点C的过程中,矩形DEGF的面积(  )A.先变大后变小 B.先变小后变大 C.一直变大 D.保持不变7、能够判断一个四边形是矩形的条件是(       A.对角线相等 B.对角线垂直C.对角线互相平分且相等 D.对角线垂直且相等8、如图,平行四边形ABCD的对角线ACBD相交于点O,下列结论错误的是(  )A.AOCO B.ADBC C.ADBC D.∠DAC=∠ACD9、下列选项中,不能被边长为2的正方形及其内部所覆盖的图形是(       A.长度为的线段 B.边长为2的等边三角形C.斜边为2的直角三角形 D.面积为4的菱形10、将一张长方形纸片按如图所示的方式折叠,BDBE为折痕,则∠EBD的度数(     A.80° B.90° C.100° D.110°第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、若过某多边形一个顶点的所有对角线将这个多边形分成3个三角形,则这个多边形是________边形.2、(1)两组对边分别________的四边形是平行四边形ABCDADBC∴四边形ABCD是平行四边形 (2)两组对边分别________的四边形是平行四边形ABCDADBC∴四边形ABCD是平行四边形 (3)两组对角分别________的四边形是平行四边形∵∠A= ∠CB=∠D∴四边形ABCD是平行四边形 (4)对角线________的四边形是平行四边形AOCOBODO∴四边形ABCD是平行四边形 (5)一组对边________的四边形是平行四边形ADBCADBC∴四边形ABCD是平行四边形3、如图,在矩形中,的角平分线于点,连接恰好平分,若,则的长为______.4、如图,已知在△ABC中,DE分别是ABAC的中点,FG分别是ADAE的中点,且FG=2 cm,BC的长度是_______ cm.5、如图,AC为正方形ABCD的对角线,EAC上一点,连接EBED,当时,的度数为______.三、解答题(5小题,每小题10分,共计50分)1、如图,正方形ABCD和正方形CEFG,点GCD上,AB=5,CE=2,TAF的中点,求CT的长.2、如图,在四边形ABCD中,ABAD,AD//BC(1)在图中,用尺规作线段BD的垂直平分线EF,分别交BDBC于点EF.(保留作图痕迹,不写作法)(2)连接DF,证明四边形ABFD为菱形.3、如图,正方形ABCD中,EBD上一点,AE的延长线交BC的延长线于点F,交CD于点HGFH的中点.(1)求证:AE=CE(2)猜想线段AEEGGF之间的数量关系,并证明.4、如图1,已知∠ACDABC的一个外角,我们容易证明∠ACD=∠A+∠B,即:三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?(1)尝试探究:如图2,已知:∠DBC与∠ECB分别为ABC的两个外角,则∠DBC+∠ECB-∠A     180°.(横线上填<、=或>)(2)初步应用:如图3,在ABC中,BPCP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案:∠P=     (3)解决问题:如图4,在四边形ABCD中,BPCP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠BAD、∠CDA的数量关系.5、已知:△ABCADBC边上的中线,点MAD上一动点(不与点A重合),过点MME∥AB,过点CCEAD,连接AE(1)如图1,当点M与点D重合时,求证:①△ABM≌△EMC;②四边形ABME是平行四边形(2)如图2,当点M不与点D重合时,试判断四边形ABME还是平行四边形吗?如果是,请给出证明;如果不是,请说明理由;(3)如图3,延长BMAC于点N,若点MAD的中点,求的值. -参考答案-一、单选题1、B【解析】【分析】利用平行四边形的对角相等即可选择正确的选项.【详解】解:四边形是平行四边形,故选:B.【点睛】本题考查了平行四边形的性质,解题的关键是记住平行四边形的性质,属于中考基础题.2、B【解析】【分析】根据周长求出边长,利用菱形的面积公式即可求解.【详解】∵菱形的周长为8,∴边长=2,∴菱形的面积=2×2=4,故选:B.【点睛】此题考查菱形的性质,熟练掌握菱形的面积=底×高是解题的关键.3、B【解析】【分析】选项A根据多边形的外角和定义判断即可;选项B根据三角形全等的判定方法判断即可;选项C根据轴对称图形的定义判断即可;选项D根据轴对称的性质判断即可.【详解】解:A.所有多边形的外角和为,故本选项不合题意;B.任意两边对应相等的两个直角三角形全等,说法正确,故本项符合题意;C.等腰三角形有1条对称轴,故本选项不合题意;D.如果两个三角形一模一样,那么它们不一定形成轴对称图形,故本选项不合题意;故选:B.【点睛】此题主要考查了多边形的外角和,轴对称的性质,等腰三角形的性质,全等三角形的判定,解题的关键是掌握轴对称图形的概念.4、B【解析】【分析】从折叠图形的性质入手,结合平行线的性质求解.【详解】解:由折叠图形的性质结合平行线同位角相等可知,故选:B.【点睛】本题考查折叠的性质及平行线的性质,解题的关键是结合图形灵活解决问题.5、A【解析】【分析】已知DE的中位线,,根据中位线定理即可求得BC的长.【详解】的中位线,故选:A.【点睛】此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半;掌握中位线定理是解题的关键.6、D【解析】【分析】连接AE,根据,推出,由此得到答案.【详解】解:连接AE故选:D.【点睛】此题考查了平行四边形的性质,矩形的性质,正确连接辅助线AE是解题的关键.7、C【解析】8、D【解析】【分析】根据平行四边形的性质解答.【详解】解:∵四边形ABCD是平行四边形,AOOC,故A正确;,故B正确; ADBC,故C正确;故选:D【点睛】此题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.9、D【解析】【分析】先计算出正方形的对角线长,即可逐项进行判定求解.【详解】解:A、正方形的边长为2,对角线长为长度为的线段能被边长为2的正方形及其内部所覆盖,故不符合题意;B、边长为2的等边三角形能被边长为2的正方形及其内部所覆盖,故不符合题意;C、斜边为2的直角三角形能被边长为2的正方形及其内部所覆盖,故不符合题意;D、而面积为4的菱形对角线长可以为8,故不能被边长为2的正方形及其内部所覆盖,故符合题意,故选:D.【点睛】本题主要考查正方形的性质,等边三角形的性质,菱形的性质等知识,解题的关键是掌握相关图形的特征进行判断.10、B【解析】【分析】根据翻折的性质可知,∠ABE=∠ABE,∠DBC=∠DBC′,又∠ABE+∠ABE+∠DBC+∠DBC′=180°,且∠EBD=∠ABE+∠DBC′,继而即可求出答案.【详解】解:根据翻折的性质可知,∠ABE=∠ABE,∠DBC=∠DBC′,又∵∠ABE+∠ABE+∠DBC+∠DBC′=180°,∴∠EBD=∠ABE+∠DBC′=180°×=90°.故选B【点睛】此题考查翻折变换的性质,三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠ABE,∠DBC=∠DBC′是解题的关键.二、填空题1、五【解析】【分析】根据过多边形的一个顶点的所有对角线,将这个多边形分成(n-2)个三角形,计算可求解.【详解】解:设这是个n边形,由题意得n-2=3,n=5,故答案为:五.【点睛】本题主要考查多边形的对角线,掌握多边形对角线的性质是解题的关键.2、     平行     相等     相等     互相平分     平行且相等【解析】3、【解析】【分析】根据矩形的性质得,根据BE的角平分线,得,则,在中,根据勾股定理得,根据平行线的性质得,由因为EC平分,等量代换得,所以,即可得.【详解】解:∵四边形ABCD为矩形,BE的角平分线,中,根据勾股定理得,EC平分故答案为:【点睛】本题考查了矩形的性质,勾股定理,角平分线的性质,平行线的性质,解题的关键是掌握这些知识点.4、8【解析】5、18°##18度【解析】【分析】由“SAS”可证DCE≌△BCE,可得∠CED=∠CEB=BED=63°,由三角形的外角的性质可求解.【详解】证明:∵四边形ABCD是正方形,AD=CD=BC=AB,∠DAE=∠BAE=∠DCA=∠BCA=45°,DCEBCE中,∴△DCE≌△BCESAS),∴∠CED=∠CEB=BED=63°,∵∠CED=∠CAD+∠ADE∴∠ADE=63°-45°=18°,故答案为:18°.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,证明DCE≌△BCE是本题的关键.三、解答题1、【解析】【分析】连接ACCF,如图,根据正方形的性质得到AC=AB=5CF=CE=2,∠ACD=45°,∠GCF=45°,则利用勾股定理得到AF=,然后根据直角三角形斜边上的中线性质得到CT的长.【详解】解:连接ACCF,如图,∵四边形ABCD和四边形CEFG都是正方形,AC=AB=5CF=CE=2,∠ACD=45°,∠GCF=45°,∴∠ACF=45°+45°=90°,RtACFTAF的中点,CT的长为【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质,也考查了直角三角形斜边上的中线性质.2、 (1)见解析(2)见解析【解析】【分析】(1)直接利用线段垂直平分线的作法得出答案;(2)结合垂直平分线的性质得出△ADE≌△FBE,即可得出AE=EF,进而利用菱形的判定方法得出答案.(1)(1)如图:EF即为所求作(2)证明:如图,连接DFAD//BC∴∠ADE=∠EBFAF垂直平分BDBE=DE在△ADE和△FBE中,∴△ADE≌△FBEASA),AE=EFBDAF互相垂直且平分,∴四边形ABFD为菱形.【点睛】此题主要考查了菱形的判定以及线段垂直平分线的性质与作法,正确应用线段垂直平分线的性质是解题关键.3、 (1)见解析(2)AE2+ GF2=EG2,证明见解析【解析】【分析】(1)根据“SAS”证明△ADE≌△CDE即可;(2)连接CG,可得CG=GF=GH=FH,再证明∠ECG=90°,然后在RtCEG中,可得CE2+CG2=EG2,进而可得线段AEEGGF之间的数量关系.(1)证明:∵四边形ABCD是正方形,AD=CD,∠ADE=∠CDE在△ADE和△CDE∴△ADE≌△CDEAE=CE(2)AE2+ GF2=EG2,理由:连接CG∵△ADE≌△CDE∴∠1=∠2.GFH的中点,CG=GF=GH=FH∴∠6=∠7.∵∠5=∠6,∴∠5=∠7.∵∠1+∠5=90°,∴∠2+∠7=90°,即∠ECG=90°,RtCEG中,CE2+CG2=EG2AE2+ GF2=EG2【点睛】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形的性质,以及勾股定理等知识,证明△ADE≌△CDE是解(1)的关键,证明∠ECG=90°是解(2)的关键.4、 (1)=(2)∠P=90°-A(3)∠P=180°-BADCDA,探究见解析【解析】【分析】(1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;(2)根据角平分线的定义得:∠CBP=DBC,∠BCP=ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°−A(3)根据平角的定义得:∠EBC=180°-∠1,∠FCB=180°-∠2,由角平分线得:∠3=EBC=90°−∠1,∠4=FCB=90°−∠2,相加可得:∠3+∠4=180°−(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.(1)DBC+∠ECB-∠A=180°,理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A∴∠DBC+∠ECB-∠A=180°,故答案为:=;(2)P=90°-A理由是:∵BP平分∠DBCCP平分∠ECB∴∠CBP=DBC,∠BCP=ECB∵△BPC中,∠P=180°-∠CBP-∠BCP=180°-(∠DBC+∠ECB),∵∠DBC+∠ECB=180°+∠A∴∠P=180°-(180°+∠A)=90°-A故答案为:∠P=90°-A(3)P=180°-BAD-CDA理由是:如图,∵∠EBC=180°-∠1,∠FCB=180°-∠2,BP平分∠EBCCP平分∠FCB∴∠3=EBC=90°-∠1,∠4=FCB=90°-∠2,∴∠3+∠4=180°-(∠1+∠2),∵四边形ABCD中,∠1+∠2=360°-(∠BAD+∠CDA),又∵△PBC中,∠P=180°-(∠3+∠4)=(∠1+∠2),∴∠P=×[360°-(∠BAD+∠CDA)]=180°-(∠BAD+∠CDA)=180°-BAD-CDA【点睛】本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,熟练掌握三角形外角的性质是关键.5、 (1)①见解析;②见解析(2)是,见解析(3)【解析】【分析】(1)①根据DEAB,得出∠EDC=∠ABM,根据CEAM,∠ECD=∠ADB,根据AM是△ABC的中线,且DM重合,得出BDDC,再证△ABD≌△EDCASA)即可;②由①得△ABD≌△EDC,得出ABED,根据ABED,即可得出结论.(2)如图,设延长BMEC于点F,过MML∥DCCFL,先证四边形MDCL为平行四边形,得出ML=DC=BD,可证BMD≌△MFLAAS),再证ABM≌△EMFASA),可证四边形ABME是平行四边形;(3)过点DDGBNAC于点G,根据MAD的中点,DGMN,得出MN为三角形中位线MNDG,根据DBC的中点,得出DGBN,可得MNBN,可求即可.(1)证明:①∵DEAB∴∠EDC=∠ABMCEAM∴∠ECD=∠ADBAMABC的中线,且DM重合,BDDCABDEDC中,∴△ABD≌△EDCASA),ABM≌△EMC②由①得ABD≌△EDCABEDABED∴四边形ABDE是平行四边形;(2)成立.理由如下:如图,设延长BMEC于点F,过MML∥DCCFLADECML∥DC∴四边形MDCL为平行四边形,ML=DC=BDML∥DC∴∠FML=∠MBD   ADEC∴∠BMD=∠MFL,∠AMB=∠EFM,在△BMD和△MFL∴△BMD≌△MFLAAS),BM=MF ,AB∥ME∴∠ABM=∠EMF在△ABM和△EMF中,∴△ABM≌△EMFASA),ABEMAB∥EM∴四边形ABME是平行四边形;(3)解:过点DDGBNAC于点GMAD的中点,DGMNMNDGDBC的中点,DGBNMNBN由(2)知四边形ABME为平行四边形,BMAE【点睛】本题考查三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质,掌握三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质是解题关键. 

    相关试卷

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品同步训练题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品同步训练题,共28页。试卷主要包含了如图,在正方形ABCD中,点E,已知锐角∠AOB,如图.等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀习题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀习题,共27页。试卷主要包含了如图,正方形的边长为,对角线等内容,欢迎下载使用。

    冀教版八年级下册第二十二章 四边形综合与测试优秀课时练习:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀课时练习,共41页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map