搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新精品解析冀教版八年级数学下册第二十二章四边形专项练习试卷(含答案详解)

    2022年最新精品解析冀教版八年级数学下册第二十二章四边形专项练习试卷(含答案详解)第1页
    2022年最新精品解析冀教版八年级数学下册第二十二章四边形专项练习试卷(含答案详解)第2页
    2022年最新精品解析冀教版八年级数学下册第二十二章四边形专项练习试卷(含答案详解)第3页
    还剩20页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十二章 四边形综合与测试优秀一课一练

    展开

    这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀一课一练,共23页。试卷主要包含了如图,在中,DE平分,,则,六边形对角线的条数共有,下列说法错误的是等内容,欢迎下载使用。
    八年级数学下册第二十二章四边形专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是(       A.5或6 B.6或7 C.5或6或7 D.6或7或82、如图,五边形中,CPDP分别平分,则(   )A.60° B.72° C.70° D.78°3、如图,平行四边形ABCD的边BC上有一动点E,连接DE,以DE为边作矩形DEGF且边FG过点A.在点E从点B移动到点C的过程中,矩形DEGF的面积(  )A.先变大后变小 B.先变小后变大 C.一直变大 D.保持不变4、如图,在中,DE平分,则       A.30° B.45° C.60° D.80°5、如图,菱形ABCD的面积为24cm2,对角线BD长6cm,点OBD的中点,过点AAEBCCB的延长线于点E,连接OE,则线段OE的长度是(       A.3cm B.4cm C.4.8cm D.5cm6、六边形对角线的条数共有(       A.9 B.18 C.27 D.547、下列说法错误的是(       A.平行四边形对边平行且相等 B.菱形的对角线平分一组对角C.矩形的对角线互相垂直 D.正方形有四条对称轴8、如图,正方形ABCD的对角线相交于点O,以点O为顶点的正方形OEGF的两边OEOF分别交正方形ABCD的两边ABBC于点MN,记的面积为的面积为,若正方形的边长,则的大小为(       A.6 B.7 C.8 D.99、在下列条件中,不能判定四边形是平行四边形的是(            A.ABCDADBC B.ABCDADBCC.ABCDABCD D.ABCDADBC10、菱形ABCD的边长为5,一条对角线长为6,则菱形面积为(  )A.20 B.24 C.30 D.48第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、五边形内角和为__________.2、如图,正方形ABCD的边长为4,EBC的中点,在对角线BD上有一点P,则PC+PE的最小值是_______.3、三角形的各边长分别是8、10、12、则连接各边中点所得的三角形的周长是___.4、在四边形ABCD中,ADBCBCCDBC=10cm,MBC上一点,且BM=4cm,点EA出发以1cm/s的速度向D运动,点F从点B出发以2cm/s的速度向点C运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t,当t的值为_____时,以AMEF为顶点的四边形是平行四边形.5、如图,在中,D外一点,使EBD的中点,则__________.三、解答题(5小题,每小题10分,共计50分)1、如图,把矩形ABCD绕点A按逆时针方向旋转得到矩形AEFG,使点E落在对角线BD上,连接DGDF(1)若∠BAE=50°,求∠DGF的度数;(2)求证:DFDC2、如图,长方形纸片ABCD沿对角线AC折叠,设点D落在D′处,BC于点EAB=6cm,BC=8cm.(1)求证AEEC(2)求阴影部分的面积.3、数学学习小组在学习了三角形中位线定理后,对四边形中有关中点的问题进行了探究:如图,在四边形中,EF分别是边的中点.(1)若,求的长.小兰说:取的中点P,连接.利用三角形中位线定理就能解答此题,请你根据小兰提供的思路解答此题;(2)小花说:根据小兰的解题思路得到启发,如果满足,就能得到的数量关系,你觉得小花说得对吗?若对,请你帮小花得到的数量关系,并说明理由.4、如图,在平行四边形ABCD中,点MAD边的中点,连接BMCM,且BMCM(1)求证:四边形ABCD是矩形;(2)若△BCM是直角三角形,直接写出ADAB之间的数量关系.5、如图,已知平行四边形ABCD(1)用尺规完成以下基本作图:在CB上截取CE,使CECD,连接DE,作∠ABC的平分线BFAD于点F.(保留作图痕迹,不写作法)(2)在(1)所作的图形中,证明四边形BEDF为平行四边形. -参考答案-一、单选题1、C【解析】【分析】实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到.【详解】解:如图,原来多边形的边数可能是5,6,7.故选C【点睛】本题考查的是截去一个多边形的一个角,解此类问题的关键是要从多方面考虑,注意不能漏掉其中的任何一种情况.2、C【解析】【分析】根据五边形的内角和等于,由,可求的度数,再根据角平分线的定义可得的角度和,进一步求得的度数.【详解】解:五边形的内角和等于的平分线在五边形内相交于点故选:C.【点睛】本题主要考查了多边形的内角和公式,角平分线的定义,解题的关键是熟记公式,注意整体思想的运用.3、D【解析】【分析】连接AE,根据,推出,由此得到答案.【详解】解:连接AE故选:D.【点睛】此题考查了平行四边形的性质,矩形的性质,正确连接辅助线AE是解题的关键.4、C【解析】【分析】根据平行四边形的性质得,故,由DE平分,即可计算【详解】∵四边形ABCD是平行四边形,DE平分故选:C.【点睛】本题考查平行四边形的性质,平行线的性质以及角平分线的定义,掌握平行四边形的性质是解题的关键.5、B【解析】【分析】由菱形的性质得出BD=6cm,由菱形的面积得出AC=8cm,再由直角三角形斜边上的中线等于斜边的一半即可得出结果.【详解】解:∵四边形ABCD是菱形,BDACBD=6cm,S菱形ABCDAC×BD=24cm2AC=8cm,AEBC∴∠AEC=90°,OEAC=4cm,故选:B.【点睛】本题主要考查了菱形的性质、直角三角形斜边上的中线性质;熟练掌握菱形的性质是解题的关键.6、A【解析】【分析】n边形对角线的总条数为:n≥3,且n为整数),由此可得出答案.【详解】解:六边形的对角线的条数= =9.故选:A.【点睛】本题考查了多边形的对角线的知识,属于基础题,解答本题的关键是掌握:n边形对角线的总条数为:n≥3,且n为整数).7、C【解析】【分析】根据矩形的性质、平行四边形的性质、菱形的性质和正方形的性质分别进行判断即可.【详解】解:A、平行四边形对边平行且相等,正确,不符合题意;B、菱形的对角线平分一组对角,正确,不符合题意;C、矩形的对角线相等,不正确,符合题意;D、正方形有四条对称轴,正确,不符合题意;故选:C.【点睛】本题考查了矩形的性质、平行四边形的性质、菱形的性质和正方形的性质,掌握以上性质定理是解题的关键.8、D【解析】【分析】由题意依据全等三角形的判定得出△BOM≌△CON,进而根据正方形的性质即可得出的大小.【详解】解:∵正方形ABCD的对角线ACBD交于点OOC=OD=BO=AO,∠ABO=∠ACB=45°,ACBD∵∠MOB+∠BON=90°,∠BON+∠CON=90°∴∠BOM=∠CON,且OC=OB,∠ABO=∠ACB=45°,∴△BOM≌△CONASA),=SBOM=S正方形ABCD,正方形的边长=S正方形ABCD -=.故选:D.【点睛】本题考查正方形的性质以及全等三角形的判定和性质等知识,灵活运用这些性质进行推理是解答本题的关键.9、D【解析】10、B【解析】【分析】根据菱形的性质利用勾股定理求得另一条对角线,再根据菱形的面积等于两对角线乘积的一半求得菱形的面积.【详解】解:如图,当BD=6时,∵四边形ABCD是菱形,ACBDAOCOBODO=3,AB=5,AO=4,AC=8,∴菱形的面积是:6×8÷2=24,故选:C.【点睛】本题主要考查菱形的面积公式,以及菱形的性质和勾股定理,关键是掌握菱形的面积等于两条对角线的积的一半.二、填空题1、540°【解析】【分析】根据n边形的内角和公式(n-2)·180°求解即可.【详解】解:五边形内角和为(5-2)×180°=540°,故答案为:540°.【点睛】本题考查多边形的内角和,熟记多边形的内角和公式是解答的关键.2、【解析】【分析】要求PE+PC的最小值,PEPC不能直接求,可考虑通过作辅助线转化PEPC的值,从而找出其最小值求解.【详解】解:如图,连接AEPA∵四边形ABCD是正方形,BD为对角线,∴点C关于BD的对称点为点APE+PC=PE+AP根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为4,EBC边的中点,BE=2,AE=故答案为:【点睛】本题主要考查了正方形的性质和轴对称及勾股定理等知识的综合应用.根据已知得出两点之间线段最短可得AE就是AP+PE的最小值是解题关键.3、15【解析】【分析】由中点和中位线定义可得新三角形的各边长为原三角形各边长的一半,即可求其周长.【详解】解:如图,DEF分别是△ABC的三边的中点,DE=ACDF=BCEF=AB∴△DEF的周长=DE+DF+EF=AC+BC+AB)=×(8+10+12)cm=15cm故答案为15.【点睛】本题考查了三角形的中位线定理,熟记三角形的中位线平行于第三边并且等于第三边的一半可得中点三角形的周长等于原三角形的周长的一半是解题的关键.4、4ss【解析】【分析】分两种情况:①当点F在线段BM上,即0≤t<2,②当F在线段CM上,即2≤t≤5,列方程求解.【详解】解:当点F在线段BM上,即0t2,以AME、F为顶点的四边形是平行四边形则有t42t,解得tF在线段CM上,即2t5,以AMEF为顶点的四边形是平行四边形,则有t2t4,解得t4综上所述,t4,以AMEF为顶点的四边形是平行四边形,故答案为:4ss【点睛】此题考查了动点问题,一元一次方程与动点问题,平行四边形的定义,熟记平行四边形的定义是解题的关键.5、##30度【解析】【分析】延长BCAD交于F,通过全等证明CBF的中点,然后利用中位线的性质即可.【详解】解:延长BCAD交于F在△ABC和△AFC∴△ABC≌△AFCASA),BC=FCCBF的中点,EBD的中点,CE为△BDF的中位线,CE//AF∴∠ACE=∠CAF∵∠ACB=90°,∠ABC=60°,∴∠BAC=30°,∴∠ACE=∠CAF=∠BAC=30°,故答案为:30°.【点睛】本题考查了全等三角形的判定与性质、三角形中位线的定义与性质,以及平行线的性质,作出正确的辅助线是解题的关键.三、解答题1、 (1)∠DGF=25°;(2)见解析【解析】【分析】(1)由旋转的性质得出AB=AEAD=AG,∠BAD=∠EAG=∠AGF=90°,由等腰三角形的性质及三角形内角和定理可得出答案;(2)证出四边形ABDF是平行四边形,由平行四边形的性质可得出结论.(1)解:由旋转得AB=AEAD=AG,∠BAD=∠EAG=∠AGF=90°,∴∠BAE=∠DAG=50°,∴∠AGD=∠ADG==65°,∴∠DGF=90°-65°=25°;(2)证明:连接AF由旋转得矩形AEFG≌矩形△ABCDAF=BD,∠FAE=∠ABE=∠AEBAFBD∴四边形ABDF是平行四边形,DF=AB=DC【点睛】本题考查了矩形的性质,全等三角形的判定和性质,旋转的性质,平行四边形的判定与性质,等腰三角形的性质,熟记矩形的性质并准确识图是解题的关键.2、 (1)证明见解析(2)【解析】【分析】(1)先根据折叠的性质可得,再根据矩形的性质、平行线的性质可得,从而可得,然后根据等腰三角形的判定即可得证;(2)设,从而可得,先在中,利用勾股定理可得的值,再利用三角形的面积公式即可得.(1)证明:由折叠的性质得:四边形是长方形,(2)解:四边形是长方形,,则中,,即解得则阴影部分的面积为【点睛】本题考查了矩形与折叠问题、等腰三角形的判定、勾股定理等知识,熟练掌握矩形与折叠的性质是解题关键.3、 (1)(2),理由见解析【解析】【分析】(1)根据题意作出辅助线,根据中位线的性质求得,根据平行线的性质求得,进而勾股定理即可求得;(2)方法同(1).(1)解:如图,取的中点P,连接 PEF分别是边的中点, ,,中,(2),理由如下,如图,取的中点P,连接 PEF分别是边的中点,,,,中,【点睛】本题考查了三角形中位线定理,勾股定理,平行线的性质,掌握中位线定理是解题的关键.4、 (1)见解析(2)AD=2AB,理由见解析【解析】【分析】(1)由SSS证明△ABM≌△DCM,得出∠A=∠D,由平行线的性质得出∠A+∠D=180°,证出∠A=90°,即可得出结论;(2)先证明△BCM是等腰直角三角形,得出∠MBC=45°,再证明△ABM是等腰直角三角形,得出AB=AM,即可得出结果.(1)证明:∵点MAD边的中点,AM=DM∵四边形ABCD是平行四边形,AB=DCABCD在△ABM和△DCM中,∴△ABM≌△DCMSSS),∴∠A=∠DABCD∴∠A+∠D=180°,∴∠A=90°,∵四边形ABCD是平行四边形,∴四边形ABCD是矩形;(2)解:ADAB之间的数量关系:AD=2AB,理由如下:∵△BCM是直角三角形,BM=CM∴△BCM是等腰直角三角形,∴∠MBC=45°,由(1)得:四边形ABCD是矩形,ADBC,∠A=90°,∴∠AMB=∠MBC=45°,∴△ABM是等腰直角三角形,AB=AM∵点MAD边的中点,AD=2AMAD=2AB【点睛】本题考查了矩形的判定与性质、平行四边形的性质、平行线的性质、全等三角形的判定与性质、等腰直角三角形的的判定与性质等知识;熟练掌握平行四边形的性质,证明△ABM≌△DCM是解题的关键.5、 (1)见解析(2)见解析【解析】【分析】(1)延长CBE使CECD,然后作∠ABC的平分线交AD的延长线于F(2)先根据平行四边形的性质得到ADBCABCDADBC,则CEAB,再证明∠ABF=∠F得到ABAF,然后证明BEDF,从而可判断四边形BEDF为平行四边形.(1)如图,DEBF为所作;(2)证明:∵四边形ABCD为平行四边形,ADBCABCDADBCCECDCEABBF平分∠ABC∴∠ABF=∠CBFAFBC∴∠CBF=∠F∴∠ABF=∠FABAFCEAF,即CBBEADDFBEDFBEDF∴四边形BEDF为平行四边形.【点睛】本题考查了作线段,作角平分线,平行四边形的性质与判定,掌握以上知识是解题的关键. 

    相关试卷

    初中冀教版第二十二章 四边形综合与测试优秀随堂练习题:

    这是一份初中冀教版第二十二章 四边形综合与测试优秀随堂练习题,共31页。试卷主要包含了下列命题不正确的是等内容,欢迎下载使用。

    冀教版八年级下册第二十二章 四边形综合与测试优秀测试题:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀测试题,共28页。试卷主要包含了如图,E等内容,欢迎下载使用。

    初中第二十二章 四边形综合与测试优秀一课一练:

    这是一份初中第二十二章 四边形综合与测试优秀一课一练,共29页。试卷主要包含了如图,正方形的边长为,对角线等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map