终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    难点详解冀教版八年级数学下册第二十二章四边形专项练习试题(含答案解析)

    立即下载
    加入资料篮
    难点详解冀教版八年级数学下册第二十二章四边形专项练习试题(含答案解析)第1页
    难点详解冀教版八年级数学下册第二十二章四边形专项练习试题(含答案解析)第2页
    难点详解冀教版八年级数学下册第二十二章四边形专项练习试题(含答案解析)第3页
    还剩24页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品综合训练题

    展开

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品综合训练题,共27页。试卷主要包含了如图,正方形的边长为,对角线等内容,欢迎下载使用。
    八年级数学下册第二十二章四边形专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABCD中,对角线ACBD相交于点O,过点OOEAC,交AD于点E,连接CE,若△CDE的周长为8,则ABCD的周长为(       A.8 B.10 C.16 D.202、如图,菱形ABCD的面积为24cm2,对角线BD长6cm,点OBD的中点,过点AAEBCCB的延长线于点E,连接OE,则线段OE的长度是(       A.3cm B.4cm C.4.8cm D.5cm3、在中,若,则的度数是(       A. B. C. D.4、一个多边形从一个顶点引出的对角线条数是4条,这个多边形的边数是(       A.5 B.6 C.7 D.85、在平行四边形ABCD中,∠A ∶∠ B ∶∠ C ∶∠ D的值可以是(       A.1∶2∶3∶4 B.1∶2∶2∶1 C.2∶2∶1∶1 D.1∶2∶1∶26、如图,正方形的边长为,对角线相交于点上的一点,且,连接并延长交于点.过点于点,交于点,则的长为(     A. B. C. D.7、正方形具有而矩形不一定具有的性质是(       A.四个角相等 B.对角线互相垂直C.对角互补 D.对角线相等8、若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是(       A.5或6 B.6或7 C.5或6或7 D.6或7或89、一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是(       A.5 B.4 C.7 D.610、在四边形ABCD中,对角线ACBD互相平分,若添加一个条件使得四边形ABCD是菱形,则这个条件可以是(       A.∠ABC=90° B.ACBD C.ABCD D.ABCD第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、平行四边形的对角线________.几何语言:∵四边形ABCD是平行四边形,AO=________,BO=________(平行四边形的对角线互相平分).2、如图,已知正方形ABCD的边长为12,BEEC,将正方形边CD沿DE折叠到DF,延长EFABG,连接DG,现在有如下3个结论:①△ADG≌△FDG;②GB=2AG;③SBEF.在以上3个结论中,正确的有______.(填序号)3、平行四边形的性质:平行四边形的两组对边分别________;平行四边形的两组对角分别________;平行四边形的对角线________.4、在任意△ABC中,取ABAC边中点DE,连接DE.像DE这样,连接三角形两边中点的线段叫做三角形的______.一个三角形有______条中位线.5、如图,正方形中,上一动点(不含,连接,过,过,连接.下列结论:①;②;③平分;④,正确的是__(填序号).三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系中,已知点,以点为顶点的平行四边形有三个,记第四个顶点分别为,如图所示.(1)若,则点的坐标分别是(  ),(  ),(  );(2)若△是以为底的等腰三角形,①直接写出的值;②若直线与△有公共点,求的取值范围.(3)若直线与△有公共点,求的取值范围.2、若直线分别交轴、轴于AC两点,点P是该直线上在第一象限内的一点,PB轴,B为垂足,且SABC= 6(1)求点BP的坐标;(2)点D是直线AP上一点,ABD是直角三角形,求点D坐标;(3)请问坐标平面是否存在点Q,使得以QCPB为顶点四边形是平行四边形,若存在请直接写出点Q的坐标;若不存在,请说明理由.3、如图,在中,EF分别为ABCD边上两点,FB平分(1)如图1,若,求CD的长;(2)如图2,若GEF上一点,且,求证:4、已知正方形与正方形(1)如图1,若点和点重合,点在线段上,点在线段的延长线上,连接,将阴影部分三角形的面积记作,则         (用含有的代数式表示).(2)如图2,若点与点重合,点在线段上,点在线段的延长线上,连接,将阴影部分三角形的面积记作,则         (用含有的代数式表示).(3)如图3,若将正方形沿正方形的边所在直线平移,使得点在线段上(点不与点重合、点不与点重合),连接,设,将阴影部分三角形的面积记作,则         (用含有的代数式表示).(4)如图4,若将正方形沿正方形的边所在直线平移,使得点的延长线上,连接,设,将阴影部分三角形的面积记作,则         (用含有的代数式表示).5、如图,已知平行四边形ABCD(1)用尺规完成以下基本作图:在CB上截取CE,使CECD,连接DE,作∠ABC的平分线BFAD于点F.(保留作图痕迹,不写作法)(2)在(1)所作的图形中,证明四边形BEDF为平行四边形. -参考答案-一、单选题1、C【解析】【分析】根据线段垂直平分线的判定和性质,可得AE=CE,又由CE+DE+CD=8,即AD+CD=8,继而可得ABCD的周长.【详解】解:∵四边形ABCD是平行四边形,OA=OCAB=CDAD=BCOEACOE是线段AC的垂直平分线,AE=CE∵△CDE的周长为8,CE+DE+CD=8,即AD+CD =8,∴平行四边形ABCD的周长为2(AD+CD)=16.故选:C.【点睛】本题考查了平行四边形的性质、线段垂直平分线的判定和性质,关键是根据线段垂直平分线的性质进行分析.此题难度不大,注意掌握数形结合思想的应用.2、B【解析】【分析】由菱形的性质得出BD=6cm,由菱形的面积得出AC=8cm,再由直角三角形斜边上的中线等于斜边的一半即可得出结果.【详解】解:∵四边形ABCD是菱形,BDACBD=6cm,S菱形ABCDAC×BD=24cm2AC=8cm,AEBC∴∠AEC=90°,OEAC=4cm,故选:B.【点睛】本题主要考查了菱形的性质、直角三角形斜边上的中线性质;熟练掌握菱形的性质是解题的关键.3、B【解析】【分析】利用平行四边形的对角相等即可选择正确的选项.【详解】解:四边形是平行四边形,故选:B.【点睛】本题考查了平行四边形的性质,解题的关键是记住平行四边形的性质,属于中考基础题.4、C【解析】【分析】根据从n边形的一个顶点引出对角线的条数为(n-3)条,可得答案.【详解】解:∵一个n多边形从某个顶点可引出的对角线条数为(n-3)条,而题目中从一个顶点引出4条对角线,n-3=4,得到n=7,∴这个多边形的边数是7.故选:C.【点睛】本题考查了多边形的对角线,从一个顶点引对角线,注意相邻的两个顶点不能引对角线.5、D【解析】6、C【解析】【分析】根据正方形的性质以及已知条件求得的长,进而证明,即可求得,勾股定理即可求得的长【详解】解:如图,设的交点为四边形是正方形,,中,故选C【点睛】本题考查了正方形的性质,勾股定理,全等三角形的性质与判定,掌握正方形的性质是解题的关键.7、B【解析】8、C【解析】【分析】实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到.【详解】解:如图,原来多边形的边数可能是5,6,7.故选C【点睛】本题考查的是截去一个多边形的一个角,解此类问题的关键是要从多方面考虑,注意不能漏掉其中的任何一种情况.9、D【解析】【分析】利用多边形内角和公式和外角和定理,列出方程即可解决问题.【详解】解:根据题意,得:(n-2)×180=360×2,解得n=6.故选:D.【点睛】本题考查了多边形内角与外角,解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数.10、B【解析】二、填空题1、     互相平分     CO     DO【解析】2、①②③【解析】【分析】根据正方形的性质和折叠的性质可得,于是根据“”判定,再由为直角三角形,可通过勾股定理列方程求出,进而求出的面积.【详解】解:由折叠可知,中,,故①正确;正方形边长是12,,则由勾股定理得:即:解得:,故②正确;,故③正确;故答案为:①②③.【点睛】本题考查了翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理,解题的关键是灵活运用这些性质解决问题.3、     相等     相等     互相平分【解析】4、     中位线     3【解析】5、①②④【解析】【分析】连接,延长于点.可证,进而可得,由此可得出;再由,即可得出;连接于点,则,证明,即可得出,进而可得;过点于点,交于点,由于是动点,的长度不确定,而是定值,即可得出不一定平分【详解】解:如图,连接,延长于点为正方形的对角线故①正确;是等腰直角三角形故②正确;连接于点,则故④正确.过点于点,交于点是动点的长度不确定,而是定值不一定等于不一定平分故③错误;故答案为:①②④.【点睛】本题考查了正方形性质,全等三角形判定和性质,角平分线性质和判定,等腰三角形的性质与判定等,熟练掌握全等三角形判定和性质,合理添加辅助线构造全等三角形是解题关键.三、解答题1、 (1)-3,3,1,3,-3,-1(2)①-2;②(3)【解析】【分析】(1)分别以为对角线,利用平行四边形以及平移的性质可得点的坐标;(2)①根据平行公理得在同一直线上,在同一直线上,可得是等腰三角形△的中位线,求出,即可得的值;②由①求得的的值可得的坐标,分别求出直线过点的值即可求解;(3)由题意用表示出点的坐标,画出图形,求出直线与△交于点的值即可求解.(1)解:轴.为对角线时,四边形是平行四边形,向左平移2个单位长度可得,即为对角线时,四边形是平行四边形,向右平移2个单位长度可得,即为对角线时,四边形是平行四边形,对角线的中点与的中点重合,的中点为故答案为:(2)解:①如图,若△是以为底的等腰三角形,四边形是平行四边形,在同一直线上,在同一直线上,是等腰三角形△的中位线,②由①得当直线过点时,,解得:当直线过点时,,解得:的取值范围为(3)解:如图,连接交于点四边形是平行四边形,关于点对称,直线与△有公共点,当直线与△交于点,解得:时,直线与△有公共点;当直线与△交于点,解得:时,直线与△有公共点;综上,的取值范围为【点睛】本题考查了平行四边形的性质,坐标与图形性质,平移的性质,一次函数的性质,一次函数图象上点的坐标特征等知识,解题的关键是利用数形结合与分类讨论的思想进行求解.2、 (1)B(2,0),P(2,3)(2)(2,3)或((3)(0,5)或(0,-1)或(4,1)【解析】【分析】(1)设Bx,0),则Pxx+2),由SABC=6列方程求出x的值,即得到点B和点P的坐标;(2)当点D与点P重合时,ABD是直角三角形;当点D与点P不重合时,过点CCEAP,先求出直线CE的解析式,再由直线BDCE求出直线BD的解析式且与y=x+2联立方程组,求出点D的坐标;(3)画出图形,根据平行四边形的性质分三种情况得出点Q坐标.(1)解:如图1,设Bx,0),则Pxx+2),对于y=x+2,当y=0时,由x+2=0,得,x=-4;当x=0时,y=2,A(-4,0),C(0,2),∵点P在第一象限,且SABC=6,×2(x+4)=6,解得x=2,B(2,0),P(2,3).(2)如图1,点D与点P重合,此时∠ABD=∠ABP=90°,∴△ABD是直角三角形,此时D(2,3);如图2,点D在线段AP上,∠ADB=90°,此时ABD是直角三角形,作CEAP,交x轴于点E则∠ACE=∠ADB=90°,BDCEAC=Em,0),AEOC=ACCE=SACE,得AEOC=ACCE∴2(m+4)=CECE=m+4),∵∠COE=90°,OE2+OC2=CE2m2+22=(m+4)]2,整理得,m2-2m+1=0,解得,m1=m2=1,E(1,0);设直线CE的解析式为y=kx+2,则k+2=0,解得,k=-2,y=-2x+2;设直线BD的解析式为y=-2x+n,则-2×2+n=0,解得,n=4,y=-2x+4,,得:D);由图象可知,当点DPA的延长线上,或点DAP的延长线上,则ABD不能是直角三角形,综上所述,点D的坐标是(2,3)或();(3)存在.如图, 当四边形CQBP是平行四边形时,此时,CQ=PB=3,Q(0,-1);当四边形CQ1PB是平行四边形时,此时,CQ1=PB=3,Q1(0,5);当四边形CPQ2B是平行四边形时,此时,CPBQ2CBPQ2Q2(4,1);综上所述,点Q的坐标为(0,5)或(0,-1)或(4,1).【点睛】此题重点考查一次函数的图象与性质、平行四边形的判定与性质、勾股定理等知识点,在解第(2)题、第(3)题时,应进行分类讨论,求出所有符合条件的结果,此题综合性较强,难度较大,属于考试压轴题.3、 (1)7(2)见解析【解析】【分析】(1)根据平行四边形的性质,可得ABCDAB=CD,可得∠EBF=∠CFB,再由∵FB平分,可得∠EFB=∠EBF,从而得到BE=EF=5,即可求解;(2)再CF上截取FN=FG,可得,从而得到∠BGF=∠BNF,再由∠GBF=∠EFD,可得到∠BFD=∠BNC,再根据BCBD,∠BCD=45°,可得BC=BD,从而证得△BDF≌△BCN,进而得到NC=FD,即可求证.(1)解:在中,ABCDAB=CD∴∠EBF=∠CFBFB平分∴∠EFB=∠CFB∴∠EFB=∠EBFBE=EF=5,AE=2,CD=AB=AE+BE=7;(2)证明:如图,再CF上截取FN=FG∴∠BGF=∠BNF ,∠BFG+∠BGF+∠GBF=180°,∠GBF=∠EFD∴∠BGF=∠BFN∴∠BFN=∠BNF∴∠BFD=∠BNCBCBD∴∠CBD=90°,∵∠BCD=45°,∴∠BDC=∠BCD=45°,BC=BD∴△BDF≌△BCNAAS),NC=FDCD=DF+FN+CN=2FD+FGAB=CDFG+2FD=AB【点睛】本题主要考查了平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质,熟练掌握平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质是解题的关键.4、 (1)(2)(3)(4)5、 (1)见解析(2)见解析【解析】【分析】(1)延长CBE使CECD,然后作∠ABC的平分线交AD的延长线于F(2)先根据平行四边形的性质得到ADBCABCDADBC,则CEAB,再证明∠ABF=∠F得到ABAF,然后证明BEDF,从而可判断四边形BEDF为平行四边形.(1)如图,DEBF为所作;(2)证明:∵四边形ABCD为平行四边形,ADBCABCDADBCCECDCEABBF平分∠ABC∴∠ABF=∠CBFAFBC∴∠CBF=∠F∴∠ABF=∠FABAFCEAF,即CBBEADDFBEDFBEDF∴四边形BEDF为平行四边形.【点睛】本题考查了作线段,作角平分线,平行四边形的性质与判定,掌握以上知识是解题的关键. 

    相关试卷

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品测试题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品测试题,共33页。

    数学冀教版第二十二章 四边形综合与测试精品测试题:

    这是一份数学冀教版第二十二章 四边形综合与测试精品测试题,共25页。

    数学八年级下册第二十二章 四边形综合与测试精品复习练习题:

    这是一份数学八年级下册第二十二章 四边形综合与测试精品复习练习题,共37页。试卷主要包含了如图,已知矩形ABCD中,R等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map