初中冀教版第二十二章 四边形综合与测试优秀随堂练习题
展开这是一份初中冀教版第二十二章 四边形综合与测试优秀随堂练习题,共31页。试卷主要包含了下列命题不正确的是等内容,欢迎下载使用。
八年级数学下册第二十二章四边形专项练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,正方形ABCD的对角线相交于点O,以点O为顶点的正方形OEGF的两边OE,OF分别交正方形ABCD的两边AB,BC于点M,N,记的面积为,的面积为,若正方形的边长,,则的大小为( )
A.6 B.7 C.8 D.9
2、下列命题中是真命题的是( ).A.有一组邻边相等的平行四边形是菱形 B.对角线互相垂直且相等的四边形是菱形
C.对角线相等的四边形是矩形 D.有一个角为直角的四边形是矩形
3、下列命题是真命题的有( )个.
①一组对边相等的四边形是矩形;②两条对角线相等的四边形是矩形;③四条边都相等且对角线互相垂直的四边形是正方形;④四条边都相等的四边形是菱形;⑤一组邻边相等的矩形是正方形.
A.1 B.2 C.3 D.4
4、下列命题不正确的是( )
A.三边对应相等的两三角形全等
B.若,则
C.有一组对边平行、另一组对边相等的四边形是平行四边形
D.的三边为a、b、c,若,则是直角三角形.
5、下列多边形中,内角和与外角和相等的是( )
A. B. C. D.
6、如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误的是( )
A.AO=CO B.AD∥BC C.AD=BC D.∠DAC=∠ACD
7、如图,点A,B,C在同一直线上,且,点D,E分别是AB,BC的中点.分别以AB,DE,BC为边,在AC同侧作三个正方形,得到三个平行四边形(阴影部分)的面积分别记作,,,若,则等于( )
A. B. C. D.
8、如图,菱形OABC的边OA在平面直角坐标系中的x轴上,,,则点C的坐标为( )
A. B. C. D.
9、如图,在平行四边形中,平分,交边于,,,则的长为( )
A.1 B.2 C.3 D.5
10、如图,2002年8月在北京召开的国际数学家大会会标其原型是我国古代数学家赵爽的《勾股弦图》,它是由四个全等的直角三角形拼接而成,如果大正方形的面积是18,直角三角形的直角边长分别为a、b,且a2+b2=ab+10,那么小正方形的面积为( )
A.2 B.3 C.4 D.5
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在平行四边形ABCD中,
(1)若∠A=130°,则∠B=______ 、∠C=______ 、∠D=______.
(2)若∠A+ ∠C= 200°,则∠A=______ 、∠B=______;
(3)若∠A:∠B= 5:4,则∠C=______ 、∠D=______.
2、如图,在▱ABCD中,AC是对角线,∠ACD=90°,点E是BC的中点,AF平分∠BAC,CF⊥AF于点F,连接EF.已知AB=5,BC=13,则EF的长为__.
3、平行四边形的性质:平行四边形的两组对边分别________;平行四边形的两组对角分别________;平行四边形的对角线________.
4、若一个正多边形的内角和与外角和的度数相等,则此正多边形对称轴条数为______.
5、如图,在矩形ABCD中,DE⊥CE,AE<BE,AD=4,AB=10,则DE长为________.
三、解答题(5小题,每小题10分,共计50分)
1、如图所示,在四边形ABCD中,∠A=80°,∠C=75°,∠ADE为四边形ABCD的一个外角,且∠ADE=125°,试求出∠B的度数.
2、如图,在菱形ABDE中,,点C是边AB的中点,点P是对角线AD上的动点(可与点A,D重合),连接PC,PB.已知,若要,求AP的取值范围.丞泽同学所在的学习小组根据学习函数的经验,设AP长为xcm,PC长为,PB长为.分别对函数,随自变量x的变化而变化的规律进行了探究,下面是丞泽同学所在学习小组的探究过程,请补充完整:
(1)按照表中自变量x的值进行取点、画图、测量,分别得到了,与x的几组对应值,表格中的______;
x/cm
0
1
2
3
4
5
6
1.73
1.00
1.00
a
2.64
3.61
4.58
3.46
2.64
2.00
1.73
2.00
2.64
3.46
(2)在同一平面直角坐标系xOy中,请在图中描出补全后的表中各组数值所对应的点,并画出函数的图象;
(3)结合函数图象,解决问题:当时,估计AP的长度的取值范围是____________;
请根据图象估计当______时,PC取到最小值.(请保留点后两位)
3、背景资料:在已知所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图1,当三个内角均小于120°时,费马点P在内部,当时,则取得最小值.
(1)如图2,等边内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求的度数,为了解决本题,我们可以将绕顶点A旋转到处,此时这样就可以利用旋转变换,将三条线段、、转化到一个三角形中,从而求出_______;
知识生成:怎样找三个内角均小于120°的三角形的费马点呢?为此我们只要以三角形一边在外侧作等边三角形并连接等边三角形的顶点与的另一顶点,则连线通过三角形内部的费马点.请同学们探索以下问题.
(2)如图3,三个内角均小于120°,在外侧作等边三角形,连接,求证:过的费马点.
(3)如图4,在中,,,,点P为的费马点,连接、、,求的值.
(4)如图5,在正方形中,点E为内部任意一点,连接、、,且边长;求的最小值.
4、数学学习小组在学习了三角形中位线定理后,对四边形中有关中点的问题进行了探究:如图,在四边形中,E,F分别是边的中点.
(1)若,,,,求的长.小兰说:取的中点P,连接,.利用三角形中位线定理就能解答此题,请你根据小兰提供的思路解答此题;
(2)小花说:根据小兰的解题思路得到启发,如果满足,就能得到、、的数量关系,你觉得小花说得对吗?若对,请你帮小花得到、、的数量关系,并说明理由.
5、已知在与中,,点在同一直线上,射线分别平分.
(1)如图1,试说明的理由;
(2)如图2,当交于点G时,设,求与的数量关系,并说明理由;
(3)当时,求的度数.
-参考答案-
一、单选题
1、D
【解析】
【分析】
由题意依据全等三角形的判定得出△BOM≌△CON,进而根据正方形的性质即可得出的大小.
【详解】
解:∵正方形ABCD的对角线AC,BD交于点O,
∴OC=OD=BO=AO,∠ABO=∠ACB=45°,AC⊥BD.
∵∠MOB+∠BON=90°,∠BON+∠CON=90°
∴∠BOM=∠CON,且OC=OB,∠ABO=∠ACB=45°,
∴△BOM≌△CON(ASA),=S△BOM,
∴,
∵=S正方形ABCD,正方形的边长,,
∴=S正方形ABCD -=.
故选:D.
【点睛】
本题考查正方形的性质以及全等三角形的判定和性质等知识,灵活运用这些性质进行推理是解答本题的关键.
2、A
【解析】
【分析】
根据平行线四边形的性质得到对边相等,加上一组邻边相等,可得到四边都相等,根据菱形的定义对A、B进行判断;根据矩形的判定方法对C、D进行判断.
【详解】
解:A、平行四边形的对边相等,若有一组邻边相等,则四边都相等,所以该选项正确;
B、对角线互相平分且垂直的四边形是菱形,所以该选项不正确;
C、对角线互相平分且相等的四边形为矩形,所以该选项不正确;
D、有三个角是直角的四边形是矩形,所以该选项不正确.
故选:A.
【点睛】
本题考查了命题与定理:判断事情的语句叫命题;正确的命题叫真命题;经过证明其正确性的命题称为定理.也考查了平行四边形、矩形和菱形的判定与性质.
3、B
【解析】
【分析】
根据两条对角线平分且相等的四边形是矩形,四条边都相等的四边形是菱形,如果对角线互相垂直平分且相等,那么这个四边形是正方形进行判断即可.
【详解】
解:①一组对边相等的四边形不一定是矩形,错误;
②两条对角线相等的平行四边形是矩形,错误;
③四条边都相等且对角线互相垂直的四边形是菱形,错误;
④四条边都相等的四边形是菱形,正确;
⑤一组邻边相等的矩形是正方形,正确.
故选:B.
【点睛】
此题考查考查平行四边形、矩形、菱形、正方形的判定方法,关键是根据矩形、正方形、菱形的判定解答.
4、C
【解析】
【分析】
根据三角形全等的判定定理(定理)、乘方运算法则、平行四边形的判定、勾股定理的逆定理逐项判断即可得.
【详解】
解:A、三边对应相等的两三角形全等,此命题正确,不符题意;
B、若,则,此命题正确,不符题意;
C、有一组对边平行、另一组对边相等的四边形有可能是等腰梯形,不一定是平行四边形,所以此项命题不正确,符合题意;
D、的三边为、、,若,即,则是直角三角形,此命题正确,不符题意;
故选:C.
【点睛】
本题考查了三角形全等的判定定理、乘方运算法则、平行四边形的判定、勾股定理的逆定理,熟练掌握各定理是解题关键.
5、B
【解析】
【分析】
根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可得解.
【详解】
解:设所求多边形的边数为n,根据题意得:
(n-2)•180°=360°,
解得n=4.
故选:B.
【点睛】
本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.
6、D
【解析】
【分析】
根据平行四边形的性质解答.
【详解】
解:∵四边形ABCD是平行四边形,
∴AO=OC,故A正确;
∴,故B正确;
∴AD=BC,故C正确;
故选:D.
【点睛】
此题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.
7、B
【解析】
【分析】
设BE=x,根据正方形的性质、平行四边形的面积公式分别表示出S1,S2,S3,根据题意计算即可.
【详解】
∵,
∴AB=2BC,
又∵点D,E分别是AB,BC的中点,
∴设BE=x,则EC=x,AD=BD=2x,
∵四边形ABGF是正方形,
∴∠ABF=45°,
∴△BDH是等腰直角三角形,
∴BD=DH=2x,
∴S1=DH•AD=,即2x•2x=,
∴x2=,
∵BD=2x,BE=x,
∴S2=MH•BD=(3x−2x)•2x=2x2,
S3=EN•BE=x•x=x2,
∴S2+S3=2x2+x2=3x2=,
故选:B.
【点睛】
本题考查的是正方形的性质、平行四边形的性质,掌握正方形的四条边相等、四个角都是90°是解题的关键.
8、A
【解析】
【分析】
如图:过C作CE⊥OA,垂足为E,然后求得∠OCE=30°,再根据含30°角直角三角形的性质求得OE,最后运用勾股定理求得CE即可解答.
【详解】
解:如图:过C作CE⊥OA,垂足为E,
∵菱形OABC,
∴OC=OA=4
∵,
∴∠OCE=30°
∵OC=4
∴OE=2
∴CE=
∴点C的坐标为.
故选A.
【点睛】
本题主要考查了菱形的性质、含30°直角三角形的性质、勾股定理等知识点,作出辅助线、求出OE、CE的长度是解答本题的关键.
9、B
【解析】
【分析】
先由平行四边形的性质得,,再证,即可求解.
【详解】
解:四边形是平行四边形,
,,
,
平分,
,
,
,
,
故选:B.
【点睛】
本题考查了平行四边形的性质,等腰三角形的判定等知识,解题的关键是灵活应用这些知识解决问题.
10、A
【解析】
【分析】
由正方形1性质和勾股定理得,再由,得,则,即可解决问题.
【详解】
解:设大正方形的边长为,
大正方形的面积是18,
,
,
,
,
,
小正方形的面积,
故选:A.
【点睛】
本题考查了勾股定理、正方形的性质以及完全平方公式等知识,解题的关键是求出.
二、填空题
1、 50° 130° 50° 100° 80° 100° 80°
【解析】
略
2、##3.5
【解析】
【分析】
延长AB、CF交于点H,由“ASA”可证,可得AC=AH=12,HF=CF,由三角形中位线定理可求解.
【详解】
解:如图,延长AB、CF交于点H,
∵四边形ABCD是平行四边形,
∴,
∴∠ACD=∠BAC=90°,
∴,
∵AF平分∠BAC,
∴∠BAF=∠CAF=45°,
在和中,
,
∴,
∴AC=AH=12,HF=CF,
∴BH=AH﹣AB=7,
∵点E是BC的中点,HF=CF,
∴EF=BH=,
故答案为:.
【点睛】
本题考查了平行四边形的性质,全等三角形的判定和性质,勾股定理,三角形中位线的定理,添加恰当辅助线构造全等三角形是本题的关键.
3、 相等 相等 互相平分
【解析】
略
4、4
【解析】
【分析】
利用多边形的内角和与外角和公式列出方程,求得多边形的边,再利用正多边形的性质可得答案.
【详解】
解:设多边形的边数为n,
根据题意(n-2)•180°=360°,
解得n=4.
所以正多边形为正方形,
所以这个正多边形有4条对称轴,
故答案为:4.
【点睛】
本题考查了多边形的内角和公式与多边形的外角和定理,解一元一次方程,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°,也考查的正多边形的对称轴的条数.
5、
【解析】
【分析】
设AE=x,则BE=10﹣x,由勾股定理得AD2+AE2=DE2,BC2+BE2=CE2,DE2+CE2=CD2,则AD2+AE2+BC2+BE2=CD2,即42+x2+42+(10﹣x)2=102,解得:x=2或x=8(舍去),则AE=2,然后由勾股定理即可求解.
【详解】
解:设AE=x,则BE=10﹣x,
∵四边形ABCD是矩形,
∴CD=AB=10,∠A=∠B=90°,
∴AD2+AE2=DE2,BC2+BE2=CE2,
∵DE⊥CE,
∴∠DEC=90°,
∴DE2+CE2=CD2,
∴AD2+AE2+BC2+BE2=CD2,
即42+x2+42+(10﹣x)2=102,
解得:x=2或x=8(不合题意,舍去),
∴AE=2,
∴DE===2,
故答案为:2.
【点睛】
本题考查了矩形的性质,勾股定理,掌握勾股定理是解题的关键.
三、解答题
1、150°
【解析】
【分析】
先根据邻补角的定义求出∠ADC的度数,再根据四边形的内角和求出∠B的度数.
【详解】
解:∵∠ADE为四边形ABCD的一个外角,且∠ADE=125°,
∴∠ADC=180°-∠ADE=55°,
∵∠A+∠B+∠C+∠ADE=360°,
∴∠B=360°-∠A-∠C-∠ADE=360°-80°-75°-55°=150°.
【点睛】
此题考查了多边形外角定义,多边形的内角和,熟记多边形的内角和进行计算是解题的关键.
2、 (1)
(2)见解析
(3)0≤AP≤3,1.50
【解析】
【分析】
(1)证明△PAB为直角三角形,再根据勾股定理得出,而点C是线段AB的中点,即可求解;
(2)描点绘出函数图象即可;
(3)观察分析函数图象即可求解.
(1)
解:在菱形ABDE中,AB=BD
∵,
∴,
∵AD=6
当x=AP=3时,则P为AD的中点
∴,
∴AB=2BP,,
∴,
∵点C是边AB的中点,
∴,即
(2)
描点绘出函数图象如下(0≤x≤6)
(3)
当PC的长度不大于PB长度时,即y1≤y2,从图象看,此时,0≤x≤3,即0≤AP≤3,
从图象看,当x大约为1.50时,y1即PC取到最小值;
故答案为:0≤AP≤3;1.50.
【点睛】
本题考查函数的图象,直角三角形的判定和性质等知识,解题的关键是理解题意,学会利用图象法解决问题,属于中考常考题型.
3、 (1)150°;
(2)见详解;
(3);
(4).
【解析】
【分析】
(1)根据旋转性质得出≌,得出∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,根据△ABC为等边三角形,得出∠BAC=60°,可证△APP′为等边三角形,PP′=AP=3,∠AP′P=60°,根据勾股定理逆定理,得出△PP′C是直角三角形,∠PP′C=90°,可求∠AP′C=∠APP+∠PPC=60°+90°=150°即可;
(2)将△APB逆时针旋转60°,得到△AB′P′,连结PP′,根据△APB≌△AB′P′,AP=AP′,PB=PB′,AB=AB′,根据∠PAP′=∠BAB′=60°,△APP′和△ABB′均为等边三角形,得出PP′=AP,根据,根据两点之间线段最短得出点C,点P,点P′,点B′四点共线时,最小=CB′,点P在CB′上即可;
(3)将△APB逆时针旋转60°,得到△AP′B′,连结BB′,PP′,得出△APB≌△AP′B′,可证△APP′和△ABB′均为等边三角形,得出PP′=AP,BB′=AB,∠ABB′=60°,根据,可得点C,点P,点P′,点B′四点共线时,最小=CB′,利用30°直角三角形性质得出AB=2AC=2,根据勾股定理BC=,可求BB′=AB=2,根据∠CBB′=∠ABC+∠ABB′=30°+60°=90°,在Rt△CBB′中,B′C=即可;
(4)将△BCE逆时针旋转60°得到△CE′B′,连结EE′,BB′,过点B′作B′F⊥AB,交AB延长线于F,得出△BCE≌△CE′B′,BE=B′E′,CE=CE′,CB=CB′,可证△ECE′与△BCB′均为等边三角形,得出EE′=EC,BB′=BC,∠B′BC=60°,,得出点C,点E,点E′,点B′四点共线时,最小=AB′,根据四边形ABCD为正方形,得出AB=BC=2,∠ABC=90°,可求∠FBB′=180°-∠ABC-∠CBB′=180°-90°-60°=30°,根据30°直角三角形性质得出BF=,勾股定理BF=,可求AF=AB+BF=2+,再根据勾股定理AB′=即可.
(1)
解:连结PP′,
∵≌,
∴∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,
∵△ABC为等边三角形,
∴∠BAC=60°
∴∠PAP′=∠PAC+∠CAP′=∠PAC+∠BAP=60°,
∴△APP′为等边三角形,
,∴PP′=AP=3,∠AP′P=60°,
在△P′PC中,PC=5,
,
∴△PP′C是直角三角形,∠PP′C=90°,
∴∠AP′C=∠APP+∠PPC=60°+90°=150°,
∴∠APB=∠AP′C=150°,
故答案为150°;
(2)
证明:将△APB逆时针旋转60°,得到△AB′P′,连结PP′,
∵△APB≌△AB′P′,
∴AP=AP′,PB=PB′,AB=AB′,
∵∠PAP′=∠BAB′=60°,
∴△APP′和△ABB′均为等边三角形,
∴PP′=AP,
∵,
∴点C,点P,点P′,点B′四点共线时,最小=CB′,
∴点P在CB′上,
∴过的费马点.
(3)
解:将△APB逆时针旋转60°,得到△AP′B′,连结BB′,PP′,
∴△APB≌△AP′B′,
∴AP′=AP,AB′=AB,
∵∠PAP′=∠BAB′=60°,
∴△APP′和△ABB′均为等边三角形,
∴PP′=AP,BB′=AB,∠ABB′=60°,
∵
∴点C,点P,点P′,点B′四点共线时,最小=CB′,
∵,,,
∴AB=2AC=2,根据勾股定理BC=
∴BB′=AB=2,
∵∠CBB′=∠ABC+∠ABB′=30°+60°=90°,
∴在Rt△CBB′中,B′C=
∴最小=CB′=;
(4)
解:将△BCE逆时针旋转60°得到△CE′B′,连结EE′,BB′,过点B′作B′F⊥AB,交AB延长线于F,
∴△BCE≌△CE′B′,
∴BE=B′E′,CE=CE′,CB=CB′,
∵∠ECE′=∠BCB′=60°,
∴△ECE′与△BCB′均为等边三角形,
∴EE′=EC,BB′=BC,∠B′BC=60°,
∵,
∴点C,点E,点E′,点B′四点共线时,最小=AB′,
∵四边形ABCD为正方形,
∴AB=BC=2,∠ABC=90°,
∴∠FBB′=180°-∠ABC-∠CBB′=180°-90°-60°=30°,
∵B′F⊥AF,
∴BF=,BF=,
∴AF=AB+BF=2+,
∴AB′=,
∴最小=AB′=.
【点睛】
本题考查图形旋转性质,等边三角形判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,30°直角三角形性质,掌握图形旋转性质,等边三角形判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,30°直角三角形性质是解题关键.
4、 (1)
(2),理由见解析
【解析】
【分析】
(1)根据题意作出辅助线,根据中位线的性质求得,根据平行线的性质求得,进而勾股定理即可求得;
(2)方法同(1).
(1)
解:如图,取的中点P,连接,,
P,E,F分别是边的中点, ,,
,,
,,
,,
,
在中,,
(2)
,理由如下,
如图,取的中点P,连接,,
P,E,F分别是边的中点,,
,,
,
,,
,
在中,,
即
【点睛】
本题考查了三角形中位线定理,勾股定理,平行线的性质,掌握中位线定理是解题的关键.
5、 (1)理由见解析
(2),理由见解析
(3)
【解析】
【分析】
(1),,可知,进而可说明;
(2)如图1所示,连接并延长至点K,分别平分,则设,为的外角,,同理,
,得;又由(1)中证明可知,,进而可得到结果;
(3)如图2所示,过点C作,则,,可得,由(1)中证明可得,在中, ,即,进而可得到结果.
(1)
证明:
又
在和中
.
(2)
解:.
理由如下:如图1所示,连接并延长至点K
分别平分
则设
为的外角
同理可得
即
.
又由(1)中证明可知
由三角形内角和公式可得
即
.
(3)
解:当时,如图2所示,过点C作,则
,即
由(1)中证明可得
在中,根据三角形内角和定理有
即
即
即,解得:
故.
【点睛】
本题考查了全等三角形的判定与性质、三角形的外角性质、三角形内角和定理、平行线的性质、角平分线的性质等知识,连接并延长,利用三角形外角性质证得是解题的关键.
相关试卷
这是一份数学第二十二章 四边形综合与测试精品练习,共24页。
这是一份初中第二十二章 四边形综合与测试优秀同步达标检测题,共35页。试卷主要包含了下列命题不正确的是等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀一课一练,共23页。试卷主要包含了如图,在中,DE平分,,则,六边形对角线的条数共有,下列说法错误的是等内容,欢迎下载使用。