开学活动
搜索
    上传资料 赚现金

    2022年最新精品解析冀教版八年级数学下册第二十二章四边形专项测试试卷

    2022年最新精品解析冀教版八年级数学下册第二十二章四边形专项测试试卷第1页
    2022年最新精品解析冀教版八年级数学下册第二十二章四边形专项测试试卷第2页
    2022年最新精品解析冀教版八年级数学下册第二十二章四边形专项测试试卷第3页
    还剩26页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中第二十二章 四边形综合与测试优秀一课一练

    展开

    这是一份初中第二十二章 四边形综合与测试优秀一课一练,共29页。试卷主要包含了如图,正方形的边长为,对角线等内容,欢迎下载使用。
    八年级数学下册第二十二章四边形专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、数学课上,老师要同学们判断一个四边形门框是否为矩形.下面是某合作小组4位同学拟定的方案,其中正确的是(       )A.测量对角线是否互相平分 B.测量一组对角是否都为直角C.测量对角线长是否相等 D.测量3个角是否为直角2、如图,矩形中,,如果将该矩形沿对角线折叠,那么图中阴影部分的面积是22.5,则       A.8 B.10 C.12 D.143、在RtABC中,∠B=90°,DEF分别是边BCCAAB的中点,AB=6,BC=8,则四边形AEDF的周长是(       A.18 B.16 C.14 D.124、如图,正方形的边长为,对角线相交于点上的一点,且,连接并延长交于点.过点于点,交于点,则的长为(     A. B. C. D.5、如图,点ABC在同一直线上,且,点DE分别是ABBC的中点.分别以ABDEBC为边,在AC同侧作三个正方形,得到三个平行四边形(阴影部分)的面积分别记作,若,则等于(       A. B. C. D.6、陈师傅应客户要求加工4个长为4cm、宽为3cm的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,下图中有可能不合格的零件是(       A. B.C. D.7、在四边形ABCD中,对角线ACBD互相平分,若添加一个条件使得四边形ABCD是菱形,则这个条件可以是(       A.∠ABC=90° B.ACBD C.ABCD D.ABCD8、矩形ABCD的对角线交于点O,∠AOD=120°,AO=3,则BC的长度是(   )A.3 B. C. D.69、若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是(       A.5或6 B.6或7 C.5或6或7 D.6或7或810、下列命题中,是真命题的是(       ).A.三角形的外心是三角形三个内角角平分线的交点B.满足的三个数是勾股数C.对角线相等的四边形各边中点连线所得四边形是矩形D.五边形的内角和为第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABC均为一个正十边形的顶点,则∠ACB=_____°.2、长方形纸片按图中方式折叠,其中为折痕,如果折叠后在一条直线上,那么的大小是________度.3、平行四边形的性质:平行四边形的两组对边分别________;平行四边形的两组对角分别________;平行四边形的对角线________.4、如图,矩形ABCD中,ACBD交于点OMN分别为BCOC的中点.若MN=4,则AC的长为__________.5、如图,已知长方形ABCD中,AD=3cm,AB=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ADE的面积为_______cm2三、解答题(5小题,每小题10分,共计50分)1、如图所示,在每个小正方形的边长均为1的网格中,线段AB的端点AB均在小正方形的顶点上.(1)在图中画出等腰ABC,且ABC为钝角三角形,点C在小正方形顶点上;(2)在(1)的条件下确定点C后,再画出矩形BCDEDE都在小正方形顶点上,且矩形BCDE的周长为16,直接写出EA的长为     2、(1)【发现证明】如图1,在正方形中,点分别是边上的动点,且,求证:.小明发现,当把绕点顺时针旋转90°至,使重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形中,如果点分别是延长线上的动点,且,则(1)中的结论还成立吗?若不成立,请写出之间的数量关系______(不要求证明)②如图3,如果点分别是延长线上的动点,且,则之间的数量关系是______(不要求证明)(3)【联想拓展】如图1,若正方形的边长为6,,求的长.3、已知:△ABCADBC边上的中线,点MAD上一动点(不与点A重合),过点MME∥AB,过点CCEAD,连接AE(1)如图1,当点M与点D重合时,求证:①△ABM≌△EMC;②四边形ABME是平行四边形(2)如图2,当点M不与点D重合时,试判断四边形ABME还是平行四边形吗?如果是,请给出证明;如果不是,请说明理由;(3)如图3,延长BMAC于点N,若点MAD的中点,求的值.4、如图,在菱形ABCD中,点EF分别是边CDBC的中点(1)求证:四边形BDEG是平行四边形;(2)若菱形ABCD的边长为13,对角线AC=24,求EG的长.5、如图,已知平行四边形ABCD(1)用尺规完成以下基本作图:在CB上截取CE,使CECD,连接DE,作∠ABC的平分线BFAD于点F.(保留作图痕迹,不写作法)(2)在(1)所作的图形中,证明四边形BEDF为平行四边形. -参考答案-一、单选题1、D【解析】【分析】矩形的判定方法有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形;由矩形的判定方法即可求解.【详解】解:A、对角线是否互相平分,能判定是否是平行四边形,故不符合题意;B、测量一组对角是否都为直角,不能判定形状,故不符合题意;C、测量对角线长是否相等,不能判定形状,故不符合题意;D、测量3个角是否为直角,若四边形中三个角都为直角,能判定矩形,故符合题意;故选:D.【点睛】本题考查的是矩形的判定、平行四边形的判定等知识;熟练掌握矩形的判定和平行四边形的判定与性质是解题的关键.2、C【解析】【分析】根据折叠和矩形的性质,可得∠DBE =∠CBDADBCAD=BCABAD,从而得到∠BDE=∠DBE,进而得到BE=DE,再由的面积是22.5,可得,然后根据勾股定理,即可求解.【详解】解:根据题意得: ∠DBE =∠CBDADBCAD=BCABAD∴∠BDE=∠CBD∴∠BDE=∠DBEBE=DE的面积是22.5, ,解得: 中,由勾股定理得:   故选:C【点睛】本题主要考查了折叠和矩形的性质,勾股定理,熟练掌握折叠和矩形的性质,勾股定理是解题的关键.3、B【解析】4、C【解析】【分析】根据正方形的性质以及已知条件求得的长,进而证明,即可求得,勾股定理即可求得的长【详解】解:如图,设的交点为四边形是正方形,,中,故选C【点睛】本题考查了正方形的性质,勾股定理,全等三角形的性质与判定,掌握正方形的性质是解题的关键.5、B【解析】【分析】BEx,根据正方形的性质、平行四边形的面积公式分别表示出S1S2S3,根据题意计算即可.【详解】 AB=2BC又∵点DE分别是ABBC的中点,∴设BEx,则ECxADBD=2x∵四边形ABGF是正方形,∴∠ABF=45°,∴△BDH是等腰直角三角形,BDDH=2xS1DHAD,即2x•2xx2BD=2xBExS2MHBD=(3x−2x)•2x=2x2S3ENBExxx2S2S3=2x2x2=3x2故选:B【点睛】本题考查的是正方形的性质、平行四边形的性质,掌握正方形的四条边相等、四个角都是90°是解题的关键.6、C【解析】【分析】根据矩形的判定定理判断即可.【详解】A满足的条件是有一个角是直角的平行四边形是矩形,A合格,不符合题意;B满足的条件是三个角是直角的四边形是矩形,B合格,不符合题意;C满足的条件是有一个角是直角的四边形,∴无法判定,C不合格,符合题意;D满足的条件是有一个角是直角的平行四边形是矩形,D合格,不符合题意;故选C【点睛】本题考查了矩形的判定定理,正确理解题意,熟练掌握矩形的判定定理是解题的关键.7、B【解析】8、C【解析】【分析】画出图形,由条件可求得△AOB为等边三角形,则可求得AC的长,在RtABC中,由勾股定理可求得BC的长.【详解】解:如下图所示:∵四边形ABCD是矩形,∴∠ABC=90°,OA=ACOB=BDAC=BDOA=OB∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,OA=AB=2,AC=2OA=4,BC2=AC2-AB2=36-9=27,BC=故选:D.【点睛】本题考查了矩形的性质、等边三角形的判定与性质以及勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.9、C【解析】【分析】实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到.【详解】解:如图,原来多边形的边数可能是5,6,7.故选C【点睛】本题考查的是截去一个多边形的一个角,解此类问题的关键是要从多方面考虑,注意不能漏掉其中的任何一种情况.10、D【解析】【分析】正确的命题是真命题,根据定义解答.【详解】解:A. 三角形的外心是三角形三条边垂直平分线的交点,故该项不符合题意;B. 满足的三个正整数是勾股数,故该项不符合题意;C. 对角线相等的四边形各边中点连线所得四边形是菱形,故该项不符合题意;D. 五边形的内角和为,故该项符合题意;故选:D【点睛】此题考查了真命题的定义,正确掌握三角形外心的定义,勾股数的定义,中点四边形的判定定理及多边形内角和的计算公式是解题的关键.二、填空题1、【解析】【分析】根据正多边形外角和和内角和的性质,得;根据四边形内角和的性质,计算得;根据五边形内角和的性质,计算得,再根据三角形外角的性质计算,即可得到答案.【详解】如图,延长BA∵正十边形,正十边形内角,即 根据题意,得四边形内角和为:,且 根据题意,得五边形内角和为:,且 故答案为:【点睛】本题考查了正多边形、三角形外角的知识;解题的关键是熟练掌握正多边形外角和、正多边形内角和的性质,从而完成求解.2、90【解析】【分析】根据折叠的性质,∠1=∠2,∠3=∠4,利用平角,计算∠2+∠3的度数即可.【详解】如图,根据折叠的性质,∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°,=90°,故答案为:90.【点睛】本题考查了折叠的性质,两个角的和,熟练掌握折叠的性质,灵活运用两个角的和是解题的关键.3、     相等     相等     互相平分【解析】4、16【解析】5、6【解析】【分析】根据折叠的条件可得:,在直角中,利用勾股定理就可以求解.【详解】解:将此长方形折叠,使点与点重合,根据勾股定理可知:解得:的面积为:故答案为:【点睛】本题考查了折叠的性质,三角形的面积,矩形的性质,勾股定理,解题的关键是注意掌握方程思想的应用.三、解答题1、 (1)见解析(2)画图见解析,【解析】【分析】(1)作出腰为5且∠ABC是钝角的等腰三角形ABC即可;(2)作出边长分别为5,3的矩形ABDE即可.(1)解:如图,AB==BC,∠ABC>90°,所以△ABC即为所求;(2)解:如图,矩形BCDE即为所求.AE= 故答案为:【点睛】本题考查作图-应用与设计作图,等腰三角形的判定,矩形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.2、(1)见解析;(2)①不成立,结论:;②,见解析;(3)【解析】【分析】(1)证明,可得出,则结论得证;(2)①将绕点顺时针旋转根据可证明,可得,则结论得证;②将绕点逆时针旋转,证明,可得出,则结论得证;(3)求出,设,则,在中,得出关于的方程,解出则可得解.【详解】(1)证明:把绕点顺时针旋转,如图1,三点共线,(2)①不成立,结论:证明:如图2,将绕点顺时针旋转②如图3,将绕点逆时针旋转故答案为:(3)解:由(1)可知正方形的边长为6,,则中,解得:【点睛】本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.3、 (1)①见解析;②见解析(2)是,见解析(3)【解析】【分析】(1)①根据DEAB,得出∠EDC=∠ABM,根据CEAM,∠ECD=∠ADB,根据AM是△ABC的中线,且DM重合,得出BDDC,再证△ABD≌△EDCASA)即可;②由①得△ABD≌△EDC,得出ABED,根据ABED,即可得出结论.(2)如图,设延长BMEC于点F,过MML∥DCCFL,先证四边形MDCL为平行四边形,得出ML=DC=BD,可证BMD≌△MFLAAS),再证ABM≌△EMFASA),可证四边形ABME是平行四边形;(3)过点DDGBNAC于点G,根据MAD的中点,DGMN,得出MN为三角形中位线MNDG,根据DBC的中点,得出DGBN,可得MNBN,可求即可.(1)证明:①∵DEAB∴∠EDC=∠ABMCEAM∴∠ECD=∠ADBAMABC的中线,且DM重合,BDDCABDEDC中,∴△ABD≌△EDCASA),ABM≌△EMC②由①得ABD≌△EDCABEDABED∴四边形ABDE是平行四边形;(2)成立.理由如下:如图,设延长BMEC于点F,过MML∥DCCFLADECML∥DC∴四边形MDCL为平行四边形,ML=DC=BDML∥DC∴∠FML=∠MBD   ADEC∴∠BMD=∠MFL,∠AMB=∠EFM,在△BMD和△MFL∴△BMD≌△MFLAAS),BM=MF ,AB∥ME∴∠ABM=∠EMF在△ABM和△EMF中,∴△ABM≌△EMFASA),ABEMAB∥EM∴四边形ABME是平行四边形;(3)解:过点DDGBNAC于点GMAD的中点,DGMNMNDGDBC的中点,DGBNMNBN由(2)知四边形ABME为平行四边形,BMAE【点睛】本题考查三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质,掌握三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质是解题关键.4、 (1)证明见解析(2)10【解析】【分析】(1)利用AC平分∠BADABCD,得到∠DAC=∠DCA,即可得到ADDC,利用一组对边平行且相等可证明四边形ABCD是平行四边形,再结合ABAD,即可求证结论;(2)根据菱形的性质,得到CD=13,AOCO=12,结合中位线性质,可得四边形BDEG是平行四边形,利用勾股定理即可得到OBOD的长度,即可求解.(1)证明:∵AC平分∠BADABCD∴∠DAC=∠BAC,∠DCA=∠BAC∴∠DAC=∠DCAADDC又∵ABCDABADABCDABCD∴四边形ABCD是平行四边形,ABAD∴四边形ABCD是菱形.(2)解:连接BD,交AC于点O,如图:∵菱形ABCD的边长为13,对角线AC=24,CD=13,AOCO=12,∵点EF分别是边CDBC的中点,EFBD(中位线),ACBD是菱形的对角线,ACBDOBOD又∵ABCDEFBDDEBGBDEG∵四边形BDEG是平行四边形,BDEG在△COD中,OCODCD=13,CO=12,EGBD=10.【点睛】本题考查了平行四边形性质判定方法、菱形的判定和性质、等腰三角形性质、勾股定理等知识,关键在于熟悉四边形的判定方法和在题目中找到合适的判定条件.5、 (1)见解析(2)见解析【解析】【分析】(1)延长CBE使CECD,然后作∠ABC的平分线交AD的延长线于F(2)先根据平行四边形的性质得到ADBCABCDADBC,则CEAB,再证明∠ABF=∠F得到ABAF,然后证明BEDF,从而可判断四边形BEDF为平行四边形.(1)如图,DEBF为所作;(2)证明:∵四边形ABCD为平行四边形,ADBCABCDADBCCECDCEABBF平分∠ABC∴∠ABF=∠CBFAFBC∴∠CBF=∠F∴∠ABF=∠FABAFCEAF,即CBBEADDFBEDFBEDF∴四边形BEDF为平行四边形.【点睛】本题考查了作线段,作角平分线,平行四边形的性质与判定,掌握以上知识是解题的关键. 

    相关试卷

    冀教版八年级下册第二十二章 四边形综合与测试精品同步练习题:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试精品同步练习题,共32页。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀达标测试:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀达标测试,共21页。试卷主要包含了下列命题不正确的是等内容,欢迎下载使用。

    冀教版八年级下册第二十二章 四边形综合与测试优秀一课一练:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀一课一练,共23页。试卷主要包含了如图,在中,DE平分,,则,六边形对角线的条数共有,下列说法错误的是等内容,欢迎下载使用。

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map