![2022年最新冀教版八年级数学下册第二十二章四边形专项测评练习题(含详解)01](http://img-preview.51jiaoxi.com/2/3/12735113/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新冀教版八年级数学下册第二十二章四边形专项测评练习题(含详解)02](http://img-preview.51jiaoxi.com/2/3/12735113/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新冀教版八年级数学下册第二十二章四边形专项测评练习题(含详解)03](http://img-preview.51jiaoxi.com/2/3/12735113/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版八年级下册第二十二章 四边形综合与测试优秀课后测评
展开八年级数学下册第二十二章四边形专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若n边形每个内角都为156°,那么n等于( )
A.8 B.12 C.15 D.16
2、如图,平行四边形ABCD的边BC上有一动点E,连接DE,以DE为边作矩形DEGF且边FG过点A.在点E从点B移动到点C的过程中,矩形DEGF的面积( )
A.先变大后变小 B.先变小后变大 C.一直变大 D.保持不变
3、下列说法正确的是( )
A.只有正多边形的外角和为360°
B.任意两边对应相等的两个直角三角形全等
C.等腰三角形有两条对称轴
D.如果两个三角形一模一样,那么它们形成了轴对称图形
4、在锐角△ABC中,∠BAC=60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④当∠ABC=60°时,MN∥BC,一定正确的有( )
A.①②③ B.②③④ C.①②④ D.①④
5、在菱形ABCD中,对角线AC,BD相交于点O,如果AC=6,BD=8,那么菱形ABCD的面积是( )
A.6 B.12 C.24 D.48
6、如图,点A,B,C在同一直线上,且,点D,E分别是AB,BC的中点.分别以AB,DE,BC为边,在AC同侧作三个正方形,得到三个平行四边形(阴影部分)的面积分别记作,,,若,则等于( )
A. B. C. D.
7、一个多边形从一个顶点引出的对角线条数是4条,这个多边形的边数是( )
A.5 B.6 C.7 D.8
8、如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是( )
A.线段EF的长逐渐增大 B.线段EF的长逐渐减小
C.线段EF的长不改变 D.线段EF的长不能确定
9、若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是( )
A.5或6 B.6或7 C.5或6或7 D.6或7或8
10、平行四边形ABCD中,若∠A=2∠B,则∠C的度数为( )
A.120° B.60° C.30° D.15°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,矩形纸片,,.如果点在边上,将纸片沿折叠,使点落在点处,如果直线经过点,那么线段的长是_______.
2、添加一个条件,使矩形ABCD是正方形,这个条件可能是 _____.
3、在四边形ABCD中,AD∥BC,BC⊥CD,BC=10cm,M是BC上一点,且BM=4cm,点E从A出发以1cm/s的速度向D运动,点F从点B出发以2cm/s的速度向点C运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t,当t的值为_____时,以A、M、E、F为顶点的四边形是平行四边形.
4、如图①,小刚沿菱形纸片ABCD各边中点的连线裁剪得到四边形纸片EFGH,再将纸片EFGH按图②所示的方式分别沿MN、PQ折叠,当PNEF时,若阴影部分的周长之和为16,△AEH,△CFG的面积之和为12,则菱形纸片ABCD的一条对角线BD的长为_____.
5、如图,在平行四边形中,是对角线,,点是的中点,平分,于点,连接.已知,,则的长为_______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,把矩形ABCD绕点A按逆时针方向旋转得到矩形AEFG,使点E落在对角线BD上,连接DG,DF.
(1)若∠BAE=50°,求∠DGF的度数;
(2)求证:DF=DC.
2、已知正多边形的内角和比外角和大720°,求该正多边形所有对角线的条数.
3、如图,已知正方形ABCD,点E在边BC上,连接AE.
(1)尺规作图:作,使,点F是的边与线段AB的交点.(不写作法,保留作图痕迹);
(2)探究:AE,DF的位置关系和数量关系,并说明理由.
4、如图,直线,线段分别与直线、交于点、点,满足.
(1)使用尺规完成基本作图:作线段的垂直平分线交于点,交于点,交线段于点,连接、、、.(保留作图痕迹,不写做法,不下结论)
(2)求证:四边形为菱形.(请补全下面的证明过程)
证明:
____①____
垂直平分
,
∴____②____
____③____
∴四边形是___④_____
∴四边形是菱形(______⑤__________)(填推理的依据).
5、如图,在平行四边形中,、分别是边、上的点,且,,求证:四边形是矩形
-参考答案-
一、单选题
1、C
【解析】
【分析】
首先求得外角的度数,然后利用多边形的外角和是360度,列式计算即可求解.
【详解】
解:由题意可知:n边形每个外角的度数是:180°-156°=24°,
则n=360°÷24°=15.
故选:C.
【点睛】
本题考查了多边形的外角与内角,熟记多边形的外角和定理是关键.
2、D
【解析】
【分析】
连接AE,根据,推出,由此得到答案.
【详解】
解:连接AE,
∵,
∴,
故选:D.
.
【点睛】
此题考查了平行四边形的性质,矩形的性质,正确连接辅助线AE是解题的关键.
3、B
【解析】
【分析】
选项A根据多边形的外角和定义判断即可;选项B根据三角形全等的判定方法判断即可;选项C根据轴对称图形的定义判断即可;选项D根据轴对称的性质判断即可.
【详解】
解:A.所有多边形的外角和为,故本选项不合题意;
B.任意两边对应相等的两个直角三角形全等,说法正确,故本项符合题意;
C.等腰三角形有1条对称轴,故本选项不合题意;
D.如果两个三角形一模一样,那么它们不一定形成轴对称图形,故本选项不合题意;
故选:B.
【点睛】
此题主要考查了多边形的外角和,轴对称的性质,等腰三角形的性质,全等三角形的判定,解题的关键是掌握轴对称图形的概念.
4、C
【解析】
【分析】
利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.
【详解】
∵CM、BN分别是高
∴△CMB、△BNC均是直角三角形
∵点P是BC的中点
∴PM、PN分别是两个直角三角形斜边BC上的中线
∴
故①正确
∵∠BAC=60゜
∴∠ABN=∠ACM=90゜−∠BAC=30゜
∴AB=2AN,AC=2AM
∴AN:AB=AM:AC=1:2
即②正确
在Rt△ABN中,由勾股定理得:
故③错误
当∠ABC=60゜时,△ABC是等边三角形
∵CM⊥AB,BN⊥AC
∴M、N分别是AB、AC的中点
∴MN是△ABC的中位线
∴MN∥BC
故④正确
即正确的结论有①②④
故选:C
【点睛】
本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.
5、C
【解析】
【分析】
利用菱形的面积公式即可求解.
【详解】
解:菱形ABCD的面积===24,
故选:C.
【点睛】
本题考查菱形的面积公式,菱形的面积等于对角线乘积的一半.
6、B
【解析】
【分析】
设BE=x,根据正方形的性质、平行四边形的面积公式分别表示出S1,S2,S3,根据题意计算即可.
【详解】
∵,
∴AB=2BC,
又∵点D,E分别是AB,BC的中点,
∴设BE=x,则EC=x,AD=BD=2x,
∵四边形ABGF是正方形,
∴∠ABF=45°,
∴△BDH是等腰直角三角形,
∴BD=DH=2x,
∴S1=DH•AD=,即2x•2x=,
∴x2=,
∵BD=2x,BE=x,
∴S2=MH•BD=(3x−2x)•2x=2x2,
S3=EN•BE=x•x=x2,
∴S2+S3=2x2+x2=3x2=,
故选:B.
【点睛】
本题考查的是正方形的性质、平行四边形的性质,掌握正方形的四条边相等、四个角都是90°是解题的关键.
7、C
【解析】
【分析】
根据从n边形的一个顶点引出对角线的条数为(n-3)条,可得答案.
【详解】
解:∵一个n多边形从某个顶点可引出的对角线条数为(n-3)条,
而题目中从一个顶点引出4条对角线,
∴n-3=4,得到n=7,
∴这个多边形的边数是7.
故选:C.
【点睛】
本题考查了多边形的对角线,从一个顶点引对角线,注意相邻的两个顶点不能引对角线.
8、C
【解析】
【分析】
因为R不动,所以AR不变.根据中位线定理,EF不变.
【详解】
解:连接AR.
因为E、F分别是AP、RP的中点,
则EF为的中位线,
所以,为定值.
所以线段的长不改变.
故选:C.
【点睛】
本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
9、C
【解析】
【分析】
实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到.
【详解】
解:如图,原来多边形的边数可能是5,6,7.
故选C
【点睛】
本题考查的是截去一个多边形的一个角,解此类问题的关键是要从多方面考虑,注意不能漏掉其中的任何一种情况.
10、A
【解析】
【分析】
根据平行四边形的性质得出BCAD,根据平行线的性质推出∠A+∠B=180°,代入求出即可.
【详解】
解:∵四边形ABCD是平行四边形,
∴BCAD,
∴∠A+∠B=180°,
把∠A=2∠B代入得:3∠B=180°,
∴∠B=60°,
∴∠C=120°
故选:A.
【点睛】
本题主要考查对平行四边形的性质,平行线的性质等知识点的理解和掌握,能推出∠A+∠B=180°是解此题的关键.
二、填空题
1、
【解析】
【分析】
根据题意可知∠AFD=90°,利用勾股定理得DF=,再证明AD=DE,即可得出EF的长,从而解决问题.
【详解】
如图,∵将纸片沿AE折叠,使点B落在点F处,
∴AB=AF=3,∠B=∠AFE=90°,∠AEB=∠AED,
∵AD∥BC,
∴∠DAE=∠AED,
∴∠DAE=∠AED,
∴AD=DE=4,
在Rt△ADF中,由勾股定理得:,
∴EF=DE-DF=,
∴BE=EF=,
故答案为:.
【点睛】
本题主要考查了翻折变换,勾股定理,等腰三角形的判定,平行线的性质等知识,证明AD=DE是解题的关键.
2、或或或或
【解析】
【分析】
根据有一组邻边相等的矩形是正方形;对角线互相垂直的矩形是正方形即可得出答案.
【详解】
解:根据有一组邻边相等的矩形是正方形得:这个条件可能是或或或,
根据对角线互相垂直的矩形是正方形得:这个条件可能是,
故答案为:或或或或.
【点睛】
本题考查了正方形的判定,熟练掌握正方形与矩形之间的关系是解题关键.
3、4s或s
【解析】
【分析】
分两种情况:①当点F在线段BM上,即0≤t<2,②当F在线段CM上,即2≤t≤5,列方程求解.
【详解】
解:①当点F在线段BM上,即0≤t<2,以A、M、E、F为顶点的四边形是平行四边形,
则有t=4﹣2t,解得t=,
②当F在线段CM上,即2≤t≤5,以A、M、E、F为顶点的四边形是平行四边形,
则有t=2t﹣4,解得t=4,
综上所述,t=4或,以A、M、E、F为顶点的四边形是平行四边形,
故答案为:4s或s.
【点睛】
此题考查了动点问题,一元一次方程与动点问题,平行四边形的定义,熟记平行四边形的定义是解题的关键.
4、12
【解析】
【分析】
证出EH是△ABD的中位线,得出BD=2EH=4HN,由题意可以设AN=PC=x,EN=HN=PF=PG=y.构建方程组求出x,y即可解决问题.
【详解】
解:连接BD,如图所示:
∵四边形ABCD是菱形,
∴AB=AD,AC与BD垂直平分,
∵E是AB的中点,H是AD的中点,
∴AE=AH,EH是△ABD的中位线,
∴EN=HN,BD=2EH=4HN,
由题意可以设AN=PC=x,EN=HN=PF=PG=y.
则有,
解得:,
∴AN=2,HN=3,
∴BD=4HN=12;
故答案为:12.
【点睛】
本题考查了菱形的性质,矩形的判定和性质、三角形中位线定理、方程组的解法等知识,解题的关键是学会利用参数构建方程解决问题.
5、##3.5##
【解析】
【分析】
延长AB、CF交于点H,由“ASA”可证△AFH≌△AFC,可得AC=AH=12,HF=CF,由三角形中位线定理可求解.
【详解】
解:如图,延长、交于点,
四边形是平行四边形,,,
,
平分,,
在和中,
,
,
,,
,
点是的中点,,
∴EF是△CBH的中位线,
,
故答案为:.
【点睛】
本题考查了平行四边形的性质,全等三角形的判定和性质,勾股定理,三角形中位线等知识,添加恰当辅助线构造全等三角形是本题的关键.
三、解答题
1、 (1)∠DGF=25°;
(2)见解析
【解析】
【分析】
(1)由旋转的性质得出AB=AE,AD=AG,∠BAD=∠EAG=∠AGF=90°,由等腰三角形的性质及三角形内角和定理可得出答案;
(2)证出四边形ABDF是平行四边形,由平行四边形的性质可得出结论.
(1)
解:由旋转得AB=AE,AD=AG,∠BAD=∠EAG=∠AGF=90°,
∴∠BAE=∠DAG=50°,
∴∠AGD=∠ADG==65°,
∴∠DGF=90°-65°=25°;
(2)
证明:连接AF,
由旋转得矩形AEFG≌矩形△ABCD,
∴AF=BD,∠FAE=∠ABE=∠AEB,
∴AF∥BD,
∴四边形ABDF是平行四边形,
∴DF=AB=DC.
【点睛】
本题考查了矩形的性质,全等三角形的判定和性质,旋转的性质,平行四边形的判定与性质,等腰三角形的性质,熟记矩形的性质并准确识图是解题的关键.
2、20条
【解析】
【分析】
多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,根据正多边形内角和与外角和的差等于720°,列方程求出正多边形的边数.然后根据n边形共有条对角线,得出此正多边形的所有对角线的条数.
【详解】
解:设此正多边形为正n边形.
由题意得:,
解得n=8,
∴此正多边形所有的对角线条数为:=20.
答:这个正多边形的所有对角线有20条.
【点睛】
此题考查多边形的边数与对角线条数,一元一次方程,解题关键在于掌握多边形内角和公式和外角和,以及对角线条数计算公式..
3、 (1)见解析;
(2),,见解析
【解析】
【分析】
(1)根据题意作出即可;
(2)证明即可得结论.
(1)
如图,即为所求.
(2)
,.
∵四边形ABCD是正方形,
∴,.
在和中,
∴(AAS),
∴.
∵,.
∴,即.
【点睛】
本题考查了正方形的性质,三角形全等的性质与判定,作一个角等于已知角,掌握全等三角形的性质与判定是解题的关键.
4、 (1)见解析
(2)①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形
【解析】
【分析】
(1)分别以A、D为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1于E,交l2于F,直线EF为线段AD的垂直平分线,连接、、、即可;
(2):根据,内错角相等得出∠2①,根据垂直平分 ,得出,,可证②△EOC,根据全等三角形性质得出OF③,再证,根据对角线互相平分的四边形是平行四边形判定四边形是平行四边形④,根据对角线互相垂直即可得出四边形是菱形(对角线互相垂直的平行四边形是菱形⑤).
(1)
解:分别以A、D为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1于E,交l2于F,直线EF为线段AD的垂直平分线,连接、、、即可;
如图所示
(2)
证明:,
∠2①,
垂直平分 ,
,,
∴②△EOC,
OF③,
,
,
,
∴四边形是平行四边形④,
,
∴四边形是菱形(对角线互相垂直的平行四边形是菱形⑤),
故答案为:①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形.
【点睛】
本题考查尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定,掌握尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定是解题关键.
5、证明见解析
【解析】
【分析】
平行四边形,可知;由于 ,可得,,知四边形为平行四边形,由可知四边形是矩形.
【详解】
证明:∵四边形 是平行四边形
∴
∵
∴
∵
∴四边形为平行四边形
又∵
∴四边形是矩形.
【点睛】
本题考查了平行四边形的性质与判定,矩形的判定等知识.解题的关键在于灵活掌握矩形的判定.
冀教版八年级下册第二十二章 四边形综合与测试精品同步练习题: 这是一份冀教版八年级下册第二十二章 四边形综合与测试精品同步练习题,共25页。试卷主要包含了已知等内容,欢迎下载使用。
冀教版八年级下册第二十二章 四边形综合与测试精品同步训练题: 这是一份冀教版八年级下册第二十二章 四边形综合与测试精品同步训练题,共28页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。
冀教版八年级下册第二十二章 四边形综合与测试优秀课堂检测: 这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀课堂检测,共37页。试卷主要包含了如图,已知矩形ABCD中,R等内容,欢迎下载使用。